ﻻ يوجد ملخص باللغة العربية
Fundamental variables in financial market are not only price and return but a very important role is also played by trading volumes. Here we propose a new multivariate model that takes into account price returns, logarithmic variation of trading volumes and also waiting times, the latter to be intended as the time interval between changes in trades, price, and volume of stocks. Our approach is based on a generalization of semi-Markov chains where an endogenous index process is introduced. We also take into account the dependence structure between the above mentioned variables by means of copulae. The proposed model is motivated by empirical evidences which are known in financial literature and that are also confirmed in this work by analysing real data from Italian stock market in the period August 2015 - August 2017. By using Monte Carlo simulations, we show that the model reproduces all these empirical evidences.
This paper offers a general and comprehensive definition of the day-of-the-week effect. Using symbolic dynamics, we develop a unique test based on ordinal patterns in order to detect it. This test uncovers the fact that the so-called day-of-the-week
This letter revisits the informational efficiency of the Bitcoin market. In particular we analyze the time-varying behavior of long memory of returns on Bitcoin and volatility 2011 until 2017, using the Hurst exponent. Our results are twofold. First,
In this paper we study the high frequency dynamic of financial volumes of traded stocks by using a semi-Markov approach. More precisely we assume that the intraday logarithmic change of volume is described by a weighted-indexed semi-Markov chain mode
This paper introduces a dynamic change of measure approach for computing the analytical solutions of expected future prices (and therefore, expected returns) of contingent claims over a finite horizon. The new approach constructs hybrid probability m
This paper presents probability distributions for price and returns random processes for averaging time interval {Delta}. These probabilities determine properties of price and returns volatility. We define statistical moments for price and returns ra