ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinematics and dynamics of freely rising spheroids at high Reynolds numbers

220   0   0.0 ( 0 )
 نشر من قبل Jelle Will
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally investigate the effect of geometrical anisotropy for buoyant ellipsoidal particles rising in a still fluid. All other parameters, such as the Galileo number $Ga approx 6000$ and the particle density ratio $Gamma approx 0.53$ are kept constant. The geometrical aspect ratio, $chi$, of the particle is varied systematically from $chi$ = 0.2 (oblate) to 5 (prolate). Based on tracking all degrees of particle motion, we identify six regimes characterised by distinct rise dynamics. Firstly, for $0.83 le chi le 1.20$, increased rotational dynamics are observed and the particle flips over semi-regularly in a tumbling-like motion. Secondly, for oblate particles with $0.29 le chi le 0.75$, planar regular zig-zag motion is observed, where the drag coefficient is independent of $chi$. Thirdly, for the most extreme oblate geometries ($chi le 0.25$) a flutter-like behaviour is found, characterised by precession of the oscillation plane and an increase in the drag coefficient. For prolate geometries, we observed two coexisting oscillation modes that contribute to complex trajectories: the first is related to oscillations of the pointing vector and the second corresponds to a motion perpendicular to the particles symmetry axis. We identify a longitudinal regime ($1.33 le chi le 2.5$), where both modes are active and a different one, the broadside-regime ($3 le chile 4$), where only the second mode is present. Remarkably, for the most prolate particles ($chi = 5$), we observe an entirely different helical rise with completely unique features.



قيم البحث

اقرأ أيضاً

The goal of this study is to elucidate the effect the particle moment of inertia (MOI) has on the dynamics of spherical particles rising in a quiescent and turbulent fluid. To this end, we performed experiments with varying density ratios $Gamma$, th e ratio of the particle density and fluid density, ranging from $0.37$ up to $0.97$. At each $Gamma$ the MOI was varied by shifting mass between the shell and the center of the particle to vary $I^*$ (the particle MOI normalised by the MOI of particle with the same weight and a uniform mass distribution). Helical paths are observed for low, and `3D chaotic trajectories at higher values of $Gamma$. The present data suggests no influence of $I^*$ on the critical value for this transition $0.42<Gamma_{textrm{crit}}<0.52$. For the `3D chaotic rise mode we identify trends of decreasing particle drag coefficient ($C_d$) and amplitude of oscillation with increasing $I^*$. Due to limited data it remains unclear if a similar dependence exists in the helical regime as well. Path oscillations remain finite for all cases studied and no `rectilinear mode is encountered, which may be the consequence of allowing for a longer transient distance in the present compared to earlier work. Rotational dynamics did not vary significantly between quiescent and turbulent surroundings, indicating that these are predominantly wake driven.
77 - Mukul Dave 2019
Bio-inspired oscillatory foil propulsion has the ability to traverse various propulsive modes by dynamically changing the foils heave and pitch kinematics. This research characterizes the propulsion properties and wake dynamics of a symmetric oscilla ting foil, specifically targeting the high Reynolds number operation of small to medium surface vessels whose propulsive specifications have a broad range of loads and speeds. An unsteady Reynolds-averaged Navier-Stokes (URANS) solver with a k-$omega$ SST turbulence model is used to sweep through pitch amplitude and frequency at two heave amplitudes of $h_0/c=1$ and $h_0/c=2$ at $Re=10^6$. At $h_0/c=2$, the maximum thrust coefficient is $C_T=8.2$ due to the large intercepted flow area of the foil, whereas at a decreased Strouhal number the thrust coefficient decreases and the maximum propulsive efficiency reaches 75%. Results illustrate the kinematics required to transition between the high-efficiency and high-thrust regimes at high Reynolds number and the resulting changes to the vortex wake structure. The unsteady vortex dynamics throughout the heave-pitch cycle strongly influence the characterization of thrust and propulsive efficiency, and are classified into flow regimes based on performance and vortex structure.
321 - H. Mouri , A. Hori 2008
The elementary structures of turbulence, i.e., vortex tubes, are studied using velocity data obtained in laboratory experiments for boundary layers and duct flows at microscale Reynolds numbers 332-1934. While past experimental studies focused on int ense vortex tubes, the present study focuses on all vortex tubes with various intensities. We obtain the mean velocity profile. The radius scales with the Kolmogorov length. The circulation velocity scales with the Kolmogorov velocity, in contrast to the case of intense vortex tubes alone where the circulation velocity scales with the rms velocity fluctuation. Since these scaling laws are independent of the configuration for turbulence production, they appear to be universal at high Reynolds numbers.
263 - Acmae El Yacoubi , Sheng Xu , 2010
In this video, we present the dynamics of an array of falling particles at intermediate Reynolds numbers. The film shows the vorticity plots of 3, 4, 7, 16 falling particles at $Re = 200$. We highlight the effect of parity on the falling configuratio n of the array. In steady state, an initially uniformly spaced array forms a convex shape when $n=3$, i.e the middle particle leads, but forms a concave shape when $n = 4$. For larger odd numbers of particles, the final state consists of a mixture of concave and convex shapes. For larger even numbers of particles, the steady state remains a concave shape. Below a threshold of initial particle spacing, particles cluster in groups of 2 to 3.
A numerical study of stably stratified flows past spheres at Reynolds numbers $Re=200$ and $Re=300$ is reported. In these flow regimes, a neutrally stratified laminar flow induces distinctly different near-wake features. However, the flow behaviour c hanges significantly as the stratification increases and suppresses the scale of vertical displacements of fluid parcels. Computations for a range of Froude numbers $Frin [0.1,infty]$ show that as Froude number decreases, the flow patterns for both Reynolds numbers become similar. The representative simulations of the lee-wave instability at $Fr=0.625$ and the two-dimensional vortex shedding at $Fr=0.25$ regimes are illustrated for flows past single and tandem spheres, thereby providing further insight into the dynamics of stratified flows past bluff bodies. In particular, the reported study examines the relative influence of viscosity and stratification on the dividing streamline elevation, wake structure and flow separation. The solutions of the Navier-Stokes equations in the incompressible Boussinesq limit are obtained on unstructured meshes suitable for simulations involving multiple bodies. Computations are accomplished using the finite volume, non-oscillatory forward-in-time (NFT) Multidimensional Positive Definite Transport Algorithm (MPDATA) based solver. The impact and validity of the numerical approximations, especially for the cases exhibiting strong stratification, are also discussed. Qualitative and quantitative comparisons with available laboratory experiments and prior numerical studies confirm the validity of the numerical approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا