ﻻ يوجد ملخص باللغة العربية
We compute the Brown measure of the sum of a self-adjoint element and an elliptic element. We prove that the push-forward of this Brown measure of a natural map is the law of the free convolution of the self-adjoint element and the semicircle law; it is also a push-forward measure of the Brown measure of the sum of the self-adjoint element and a circular element by another natural map. We also study various asymptotic behaviors of this family of Brown measures as the variance of the elliptic element approaches infinity.
We compute the Brown measure of $x_{0}+isigma_{t}$, where $sigma_{t}$ is a free semicircular Brownian motion and $x_{0}$ is a freely independent self-adjoint element. The Brown measure is supported in the closure of a certain bounded region $Omega_{t
Let $x_0$ be a possibly-unbounded self-adjoint random variable, $tildesigma_alpha$ and $sigma_beta$ are semicircular variables with variances $alphageq 0$ and $beta>0$ respectively (when $alpha = 0$, $tildesigma_alpha = 0$). Suppose $x_0$, $sigma_alp
Let $x_0$ be a self-adjoint random variable and $c_t$ be a free circular Brownian motion, freely independent from $x_0$. We use the Hamilton--Jacobi method to compute the Brown measure $rho_t$ of $x_0+c_t$. The Brown measure is absolutely continuous
Let $mathfrak{g}$ be a simple Lie algebra of rank $r$ over $mathbb{C}$, $mathfrak{h} subset mathfrak{g}$ a Cartan subalgebra. We construct a family of $r$ commuting Hermitian operators acting on $mathfrak{h}$ whose eigenvalues are equal to the coordi
We compute the deficiency spaces of operators of the form $H_A{hat{otimes}} I + I{hat{otimes}} H_B$, for symmetric $H_A$ and self-adjoint $H_B$. This enables us to construct self-adjoint extensions (if they exist) by means of von Neumanns theory. The