ترغب بنشر مسار تعليمي؟ اضغط هنا

Double Hawking temperature in de Sitter Universe and cosmological constant problem

65   0   0.0 ( 0 )
 نشر من قبل Grigory Volovik
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G.E. Volovik




اسأل ChatGPT حول البحث

As distinct from the black hole physics, the de Sitter thermodynamics is not determined by the cosmological horizon, the effective temperature differs from the Hawking temperature. In particular, the atom in the de Sitter universe experiences thermal activation corresponding to the local temperature, which is twice larger than the Hawking temperature, $T_{rm loc}=2T_{rm Hawking}$. The same double Hawking temperature describes the decay of massive scalar field in the de Sitter universe. The reason, why the local temperature is exactly twice the Hawking temperature, follows from the geometry of the de Sitter spacetime. The weakening of the role of the cosmological horizon in de Sitter universe is confirmed by considering Hawking radiation. We discuss the difference between the radiation of particles in the de Sitter spacetime and the Schwinger pair creation in the electric field. We use the stationary Painleve-Gullstrand metric for the de Sitter spacetime, where the particles are created by Hawking radiation from the cosmological horizon, and time independent gauge for the electric field. In these stationary frames the Hamiltonians and the energy spectra of massive particles look rather similar. However, the final results are essentially different. In case of Schwinger pair production the number density of the created pairs grows with time, while in the de Sitter vacuum the number density of the created pairs is finite. The latter suggests that Hawking radiation from the cosmological horizon does not lead to instability of the de Sitter vacuum. The other mechanisms of instability are required for the dynamical solution of the cosmological constant problem. We consider the possible role of the local temperature $T_{rm loc}=2T_{rm H}$ in the decay of the de Sitter space-time due to the energy exchange between the vacuum energy and relativistic matter with this temperature.



قيم البحث

اقرأ أيضاً

Using the analytic extension method, we study Hawking radiation of an $(n + 4)$-dimensional Schwarzschild-de Sitter black hole. Under the condition that the total energy is conserved, taking the reaction of the radiation of particles to the spacetime into consideration and considering the relation between the black hole event horizon and cosmological horizon, we obtain the radiation spectrum of de Sitter spacetime. This radiation spectrum is no longer a strictly pure thermal spectrum. It is related to the change of the Bekenstein-Hawking(B-H) entropy corresponding the black hole event horizon and cosmological horizon. The result satisfies the unitary principle. At the same time, we also testify that the entropy of de Sitter spacetime is the sum of the entropy of black hole event horizon and the one of cosmological horizon.
76 - Tomonori Totani 2015
Deriving the Einstein field equations (EFE) with matter fluid from the action principle is not straightforward, because mass conservation must be added as an additional constraint to make rest-frame mass density variable in reaction to metric variati on. This can be avoided by introducing a constraint $delta(sqrt{-g}) = 0$ to metric variations $delta g^{mu u}$, and then the cosmological constant $Lambda$ emerges as an integration constant. This is a removal of one of the four constraints on initial conditions forced by EFE at the birth of the universe, and it may imply that EFE are unnecessarily restrictive about initial conditions. I then adopt a principle that the theory of gravity should be able to solve time evolution starting from arbitrary inhomogeneous initial conditions about spacetime and matter. The equations of gravitational fields satisfying this principle are obtained, by setting four auxiliary constraints on $delta g^{mu u}$ to extract six degrees of freedom for gravity. The cost of achieving this is a loss of general covariance, but these equations constitute a consistent theory if they hold in the special coordinate systems that can be uniquely specified with respect to the initial space-like hypersurface when the universe was born. This theory predicts that gravity is described by EFE with non-zero $Lambda$ in a homogeneous patch of the universe created by inflation, but $Lambda$ changes continuously across different patches. Then both the smallness and coincidence problems of the cosmological constant are solved by the anthropic argument. This is just a result of inhomogeneous initial conditions, not requiring any change of the fundamental physical laws in different patches.
Acoustic holes are the hydrodynamic analogue of standard black holes. Featuring an acoustic horizon, these systems spontaneously emit phonons at the Hawking temperature. We derive the Hawking temperature of the acoustic horizon by fully exploiting th e analogy between black and acoustic holes within a covariant kinetic theory approach. After deriving the phonon distribution function from the covariant kinetic equations, we reproduce the expression of the Hawking temperature by equating the entropy and energy losses of the acoustic hole and the entropy and energy gains of the spontaneously emitted phonons. Differently from previous calculations we do not need a microscopical treatment of normal modes propagation. Our approach opens a different perspective on the meaning of Hawking temperature and its connection with entropy which may allow an easier study of non stationary horizons beyond thermodynamic equilibrium.
126 - M. V. Takook 2017
We give in this paper an explicit construction of the covariant quantization of the rank-two massless tensor field on de Sitter space (linear covariant quantum gravity on a de Sitter background). The main ingredient of the construction is an indecomp osable representation of de Sitter group. We here make the choice of a specific simple gauge fixing. We show that our gauge fixing eliminates any infrared divergence in the two-point function for the traceless part of this field. But it is not possible to do the same for the pure trace part (conformal sector). We describe the related Krein space structure and covariant field operators. This work is in the continuation of our previous ones concerning the massless minimally coupled scalar fields and the massive tensor field on de Sitter.
We present and describe an exact solution of Einsteins equations which represents a snapping cosmic string in a vacuum background with a cosmological constant $Lambda$. The snapping of the string generates an impulsive spherical gravitational wave wh ich is a particular member of a known family of such waves. The global solution for all values of $Lambda$ is presented in various metric forms and interpreted geometrically. It is shown to represent the limit of a family of sandwich type N Robinson-Trautman waves. It is also derived as a limit of the C-metric with $Lambda$, in which the acceleration of the pair of black holes becomes unbounded while their masses are scaled to zero.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا