ﻻ يوجد ملخص باللغة العربية
The Kuramoto model is a canonical model for understanding phase-locking phenomenon. It is well-understood that, in the usual mean-field scaling, full phase-locking is unlikely and that it is partially phase-locked states that are important in applications. Despite this, while there has been much attention given to the existence and stability of fully phase-locked states in the finite N Kuramoto model, the partially phase-locked states have received much less attention. In this paper, we present two related results. Firstly, we derive an analytical criterion that, for sufficiently strong coupling, guarantees the existence of a partially phase-locked state by proving the existence of an attracting ball around a fixed point of a subset of the oscillators. We also derive a larger invariant ball such that any point in it will asymptotically converge to the attracting ball. Secondly, we consider the large N (thermodynamic) limit for the Kuramoto system with randomly distributed frequencies. Using some results of De Smet and Aeyels on partial entrainment, we derive a deterministic condition giving almost sure existence of a partially entrained state for sufficiently strong coupling when the natural frequencies of the individual oscillators are independent identically distributed random variables, as well as upper and lower bounds on the size of the largest cluster of partially entrained oscillators. Interestingly in a series on numerical experiments we find that the observed size of the largest entrained cluster is predicted extremely well by the upper bound.
We consider the inertial Kuramoto model of $N$ globally coupled oscillators characterized by both their phase and angular velocity, in which there is a time delay in the interaction between the oscillators. Besides the academic interest, we show that
We study a variant of Kuramoto-Sakaguchi model in which oscillators are divided into two groups, each characterized by its coupling constant and phase lag. Specifically, we consider the case that one coupling constant is positive and the other negati
We examine analytically and numerically a variant of the stochastic Kuramoto model for phase oscillators coupled on a general network. Two populations of phased oscillators are considered, labelled `Blue and `Red, each with their respective networks,
We study the global bifurcations of frequency weighted Kuramoto model in low-dimension for network of fully connected oscillators. To study the effect of non-zero-centered frequency distribution, we consider two symmetric Lorentzians as an example. W
The Kuramoto-Sakaguchi model for coupled phase oscillators with phase-frustration is often studied in the thermodynamic limit of infinitely many oscillators. Here we extend a model reduction method based on collective coordinates to capture the colle