ترغب بنشر مسار تعليمي؟ اضغط هنا

Absolute neutrino mass as the missing link to the dark sector

64   0   0.0 ( 0 )
 نشر من قبل Michael Klasen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With the KATRIN experiment, the determination of the absolute neutrino mass scale down to cosmologically favored values has come into reach. We show that this measurement provides the missing link between the Standard Model and the dark sector in scotogenic models, where the suppression of the neutrino masses is economically explained by their only indirect coupling to the Higgs field. We determine the linear relation between the electron neutrino mass and the scalar coupling $lambda_5$ associated with the dark neutral scalar mass splitting to be $lambda_5=3.1times10^{-9} m_{ u_e}/$eV. This relation then induces correlations among the DM and new scalar masses and their Yukawa couplings. Together, KATRIN and future lepton flavor violation experiments can then probe the fermion DM parameter space, irrespective of the neutrino mass hierarchy and CP phase.



قيم البحث

اقرأ أيضاً

We revisit our previous work [Phys. Rev. D 95, 096014 (2017)] where neutrino oscillation and nonoscillation data were analyzed in the standard framework with three neutrino families, in order to constrain their absolute masses and to probe their orde ring (either normal, NO, or inverted, IO). We include updated oscillation results to discuss best fits and allowed ranges for the two squared mass differences $delta m^2$ and $Delta m^2$, the three mixing angles $theta_{12}$, $theta_{23}$ and $theta_{13}$, as well as constraints on the CP-violating phase $delta$, plus significant indications in favor of NO vs IO at the level of $Deltachi^2=10.0$. We then consider nonoscillation data from beta decay, from neutrinoless double beta decay (if neutrinos are Majorana), and from various cosmological input variants (in the data or the model) leading to results dubbed as default, aggressive, and conservative. In the default option, we obtain from nonoscillation data an extra contribution $Deltachi^2 = 2.2$ in favor of NO, and an upper bound on the sum of neutrino masses $Sigma < 0.15$ eV at $2sigma$; both results - dominated by cosmology - can be strengthened or weakened by using more aggressive or conservative options, respectively. Taking into account such variations, we find that the combination of all (oscillation and nonoscillation) neutrino data favors NO at the level of $3.2-3.7sigma$, and that $Sigma$ is constrained at the $2sigma$ level within $Sigma < 0.12-0.69$ eV. The upper edge of this allowed range corresponds to an effective $beta$-decay neutrino mass $m_beta = Sigma/3 = 0.23$ eV, at the sensitivity frontier of the KATRIN experiment.
207 - S. Baek , P. Ko , Wan-Il Park 2013
Assuming dark matter is absolutely stable due to unbroken dark gauge symmetry and singlet operators are portals to the dark sector, we present a simple extension of the standard seesaw model that can accommodate all the cosmological observations as w ell as terrestrial experiments available as of now, including leptogenesis, extra dark radiation of $sim 0.08$ (resulting in $N_{rm eff} = 3.130$ the effective number of neutrino species), Higgs inflation, small and large scale structure formation, and current relic density of scalar DM ($X$). The Higgs signal strength is equal to one as in the SM for unbroken $U(1)_X$ case with a scalar dark matter, but it could be less than one independent of decay channels if the dark matter is a dark sector fermion or if $U(1)_X$ is spontaneously broken, because of a mixing with a new neutral scalar boson in the models.
We introduce a model in which the genesis of dark matter (DM) and neutrino masses is associated with a first order phase transition of a scalar singlet field. During the phase transition a source right-handed neutrino (RHN) acquires a spacetime-depen dent mass dynamically, a small fraction of which is converted via resonant oscillations into a very weakly mixed dark RHN which decays to a dark matter RHN with the observed relic abundance. Neutrino masses are generated via a traditional two RHN type-I seesaw between a fourth RHN and the source neutrino. The gravitational waves produced during the phase transition have a peak frequency that increases with the DM mass, and are detectable at future gravitational wave interferometers for DM masses above ~ 1 MeV. Since the source RHNs are heavier than the electroweak scale, successful leptogenesis is also attainable.
Within the standard three-neutrino framework, the absolute neutrino masses and their ordering (either normal, NO, or inverted, IO) are currently unknown. However, the combination of current data coming from oscillation experiments, neutrinoless doubl e beta decay searches, and cosmological surveys, can provide interesting constraints for such unknowns in the sub-eV mass range, down to O(0.1) eV in some cases. We discuss current limits on absolute neutrino mass observables by performing a global data analysis, that includes the latest results from oscillation experiments, neutrinoless double beta decay bounds from the KamLAND-Zen experiment, and constraints from representative combinations of Planck measurements and other cosmological data sets. In general, NO appears to be somewhat favored with respect to IO at the level of ~2 sigma, mainly by neutrino oscillation data (especially atmospheric), corroborated by cosmological data in some cases. Detailed constraints are obtained via the chi^2 method, by expanding the parameter space either around separate minima in NO and IO, or around the absolute minimum in any ordering. Implications for upcoming oscillation and non-oscillation neutrino experiments, including beta-decay searches, are also discussed.
We study a simple model of thermal dark matter annihilating to standard model neutrinos via the neutrino portal. A (pseudo-)Dirac sterile neutrino serves as a mediator between the visible and the dark sectors, while an approximate lepton number symme try allows for a large neutrino Yukawa coupling and, in turn, efficient dark matter annihilation. The dark sector consists of two particles, a Dirac fermion and complex scalar, charged under a symmetry that ensures the stability of the dark matter. A generic prediction of the model is a sterile neutrino with a large active-sterile mixing angle that decays primarily invisibly. We derive existing constraints and future projections from direct detection experiments, colliders, rare meson and tau decays, electroweak precision tests, and small scale structure observations. Along with these phenomenological tests, we investigate the consequences of perturbativity and scalar mass fine tuning on the model parameter space. A simple, conservative scheme to confront the various tests with the thermal relic target is outlined, and we demonstrate that much of the cosmologically-motivated parameter space is already constrained. We also identify new probes of this scenario such as multi-body kaon decays and Drell-Yan production of $W$ bosons at the LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا