ترغب بنشر مسار تعليمي؟ اضغط هنا

Decentralized Accessibility of e-commerce Products through Blockchain Technology

72   0   0.0 ( 0 )
 نشر من قبل William Buchanan Prof
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A distributed and transparent ledger system is considered for various e-commerce products including health medicines, electronics, security appliances, food products and many more to ensure technological and e-commerce sustainability. This solution, named as PRODCHAIN, is a generic blockchain framework with lattice-based cryptographic processes for reducing the complexity for tracing the e-commerce products. Moreover, we have introduced a rating based consensus process called Proof of Accomplishment (PoA). The solution has been analyzed and experimental studies are performed on Ethereum network. The results are discussed in terms of latency and throughput which prove the efficiency of PRODCHAIN in e-commerce products and services. The presented solution is beneficial for improving the traceability of the products ensuring the social and financial sustainability. This work will help the researchers to gain knowledge about the blockchain implications for supply chain possibilities in future developments for society.

قيم البحث

اقرأ أيضاً

The public blockchain was originally conceived to process monetary transactions in a peer-to-peer network while preventing double-spending. It has since been extended to numerous other applications including execution of programs that exist on the bl ockchain called smart contracts. Smart contracts have a major limitation, namely they only operate on data that is on the blockchain. Trusted entities called oracles attest to external data in order to bring it onto the blockchain but they do so without the robust security guarantees that blockchains generally provide. This has the potential to turn oracles into centralized points-of-failure. To address this concern, this paper introduces Astraea, a decentralized oracle based on a voting game that decides the truth or falsity of propositions. Players fall into two roles: voters and certifiers. Voters play a low-risk/low-reward role that is resistant to adversarial manipulation while certifiers play a high-risk/high-reward role so they are required to play with a high degree of accuracy. This paper also presents a formal analysis of the parameters behind the system to measure the probability of an adversary with bounded funds being able to successfully manipulate the oracles decision, that shows that the same parameters can be set to make manipulation arbitrarily difficult---a desirable feature for the system. Further, this analysis demonstrates that under those conditions a Nash equilibrium exists where all rational players are forced to behave honestly.
In todays business environment, it is difficult to imagine a workplace without access to the web, yet a variety of email born viruses, spyware, adware, Trojan horses, phishing attacks, directory harvest attacks, DoS attacks, and other threats combine to attack businesses and customers. This paper is an attempt to review phishing - a constantly growing and evolving threat to Internet based commercial transactions. Various phishing approaches that include vishing, spear phishng, pharming, keyloggers, malware, web Trojans, and others will be discussed. This paper also highlights the latest phishing analysis made by Anti-Phishing Working Group (APWG) and Korean Internet Security Center.
Decentralized Autonomous Organization (DAO) is believed to play a significant role in our future society governed in a decentralized way. In this article, we first explain the definitions and preliminaries of DAO. Then, we conduct a literature review of the existing studies of DAO published in the recent few years. Through the literature review, we find out that a comprehensive survey towards the state-of-the-art studies of DAO is still missing. To fill this gap, we perform such an overview by identifying and classifying the most valuable proposals and perspectives closely related to the combination of DAO and blockchain technologies. We anticipate that this survey can help researchers, engineers, and educators acknowledge the cutting-edge development of blockchain-related DAO technologies.
Activity-tracking applications and location-based services using short-range communication (SRC) techniques have been abruptly demanded in the COVID-19 pandemic, especially for automated contact tracing. The attention from both public and policy keep s raising on related practical problems, including textit{1) how to protect data security and location privacy? 2) how to efficiently and dynamically deploy SRC Internet of Thing (IoT) witnesses to monitor large areas?} To answer these questions, in this paper, we propose a decentralized and permissionless blockchain protocol, named textit{Bychain}. Specifically, 1) a privacy-preserving SRC protocol for activity-tracking and corresponding generalized block structure is developed, by connecting an interactive zero-knowledge proof protocol and the key escrow mechanism. As a result, connections between personal identity and the ownership of on-chain location information are decoupled. Meanwhile, the owner of the on-chain location data can still claim its ownership without revealing the private key to anyone else. 2) An artificial potential field-based incentive allocation mechanism is proposed to incentivize IoT witnesses to pursue the maximum monitoring coverage deployment. We implemented and evaluated the proposed blockchain protocol in the real-world using the Bluetooth 5.0. The storage, CPU utilization, power consumption, time delay, and security of each procedure and performance of activities are analyzed. The experiment and security analysis is shown to provide a real-world performance evaluation.
Cyber attacks are becoming more frequent and sophisticated, introducing significant challenges for organizations to protect their systems and data from threat actors. Today, threat actors are highly motivated, persistent, and well-founded and operate in a coordinated manner to commit a diversity of attacks using various sophisticated tactics, techniques, and procedures. Given the risks these threats present, it has become clear that organizations need to collaborate and share cyber threat information (CTI) and use it to improve their security posture. In this paper, we present TRADE -- TRusted Anonymous Data Exchange -- a collaborative, distributed, trusted, and anonymized CTI sharing platform based on blockchain technology. TRADE uses a blockchain-based access control framework designed to provide essential features and requirements to incentivize and encourage organizations to share threat intelligence information. In TRADE, organizations can fully control their data by defining sharing policies enforced by smart contracts used to control and manage CTI sharing in the network. TRADE allows organizations to preserve their anonymity while keeping organizations fully accountable for their action in the network. Finally, TRADE can be easily integrated within existing threat intelligence exchange protocols - such as trusted automated exchange of intelligence information (TAXII) and OpenDXL, thereby allowing a fast and smooth technology adaptation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا