ترغب بنشر مسار تعليمي؟ اضغط هنا

Extended quantum diffusion approach to reactions of astrophysical interests

100   0   0.0 ( 0 )
 نشر من قبل Vazgen Sargsyan Dr.
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The quantum diffusion approach is extended to low energy fusion (capture) reactions of light- and medium-mass nuclei. The dependence of the friction parameter on bombarding energy is taken into account. A simple analytic expression is obtained for the capture probability at extreme sub-barrier energies. The calculated cross-sections are in a good agreement with the experimental data. The fusion excitation functions calculated within the quantum diffusion and WKB approaches are compared and presented in the astrophysical $S$-factor representation.

قيم البحث

اقرأ أيضاً

With the quantum diffusion approach the behavior of capture cross sections and mean-square angular momenta of captured systems are revealed in the reactions with deformed nuclei at subbarrier energies. The calculated results are in a good agreement w ith existing experimental data. With decreasing bombarding energy under the barrier the external turning point of the nucleusnucleus potential leaves the region of short-range nuclear interaction and action of friction. Because of this change of the regime of interaction, an unexpected enhancement of the capture cross section is expected at bombarding energies far below the Coulomb barrier. This effect is shown its worth in the dependence of mean-square angular momentum of captured system on the bombarding energy. From the comparison of calculated and experimental capture cross sections, the importance of quasifission near the entrance channel is shown for the actinide-based reactions leading to superheavy nuclei.
An introduction to nucleosynthesis, the creation of the elements in the big bang, in interstellar matter and in stars is given. The two--step process $^4$He(2n,$gamma$)$^6$He and the reverse photodisintegration $^6$He($gamma$,2n)$^4$He involving the halo nucleus $^6$He could be of importance in the $alpha$--process in type--II supernovae. The reaction rates for the above processes are calculated using three--body methods and show an enhancement of more than three orders of magnitude compared to the previous adopted value. Direct--capture calculations give similar values for the above reaction rates. Therefore, this method was also used to calculate the reaction rates of the two--step processes $^6$He(2n,$gamma$)$^8$He and $^9$Li(2n,$gamma$)$^{11}$Li and the reverse photodisintegration of $^8$He and $^{11}$Li that could be also of importance in the $alpha$-process.
Nonequilibrium Greens functions represent underutilized means of studying the time evolution of quantum many-body systems. In view of a rising computer power, an effort is underway to apply the Greens functions formalism to the dynamics of central nu clear reactions. As the first step, mean-field evolution for the density matrix for colliding slabs is studied in one dimension. The strategy to extend the dynamics to correlations is described.
66 - V. D. Efros 2017
A method to calculate reactions in quantum mechanics is outlined. It is advantageous, in particular, in problems with many open channels of various nature i.e. when energy is not low. In the method there is no need to specify reaction channels in a d ynamics calculation. These channels come into play at merely the kinematics level and only after a dynamics calculation is done. This calculation is of the bound--state type while continuum spectrum states never enter the game.
63 - Denis S. Grebenkov 2020
Dynamics of a particle diffusing in a confinement can be seen a sequence of bulk-diffusion-mediated hops on the confinement surface. Here, we investigate the surface hopping propagator that describes the position of the diffusing particle after a pre scribed number of encounters with that surface. This quantity plays the central role in diffusion-influenced reactions and determines their most common characteristics such as the propagator, the first-passage time distribution, and the reaction rate. We derive explicit formulas for the surface hopping propagator and related quantities for several Euclidean domains: half-space, circular annuli, circular cylinders, and spherical shells. These results provide the theoretical ground for studying diffusion-mediated surface phenomena. The behavior of the surface hopping propagator is investigated for both immortal and mortal particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا