ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-resolved Photoluminescence in Terahertz-driven Hybrid Systems of Plasmons and Excitons

68   0   0.0 ( 0 )
 نشر من قبل Chen-Yen Lai
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultrafast pump-probe technique is a powerful tool to understand and manipulate properties of materials for designing novel quantum devices. An intense, single cycle terahertz pulse can change the intrinsic properties of semiconductor quantum dots to have different luminescence. In a hybrid system of plasmon and exciton, the coherence and coupling between these two degrees of freedom play an important role on their optical properties. Therefore, we consider a terahertz pump optical probe experiment in the hybrid systems where the terahertz pump pulse couples to the exciton degrees of freedom on the quantum dot. The time resolved photoluminescence of the hybrid system shows that the response of the characteristic frequency shifts according to the overlap between the pump and probe pulses. Furthermore, the resonance between the exciton and plasmons can be induced by the terahertz pump pulse in some parameter regimes. Our results show the terahertz driven hybrid system can be a versatile tool for manipulating the material properties and open a new route to design modern optical devices.



قيم البحث

اقرأ أيضاً

138 - Chen-Yen Lai , S. A. Trugman , 2019
Understanding the physics of light emitter in quantum nanostructure regarding scalability, geometry, structure of the system and coupling between different degrees of freedom is important as one can improve the design and further provide controls of quantum devices rigorously. The couplings between these degrees of freedom, in general, depends on the external field, the geometry of nano particles, and the experimental design. An effective model is proposed to describe the plasmon-exciton hybrid systems and its optical absorption spectrums are studied in details by exact diagonalization. Two different designs are discussed: nano particle planet surrounded by quantum dot satellites and quantum dot planet surrounded by nano particle satellites. In both setups, details of many quantum dots and nano particles are studied, and the spectrums are discussed in details regarding the energy of transition peaks and the weight distribution of allowed transition peaks. Also, different polarization of external fields are considered which results in anisotropic couplings, and the absorption spectrums clearly reveal the difference qualitatively. Finally, the system will undergo a phase transition in the presence of attractive interaction between excitons. Our work sheds the light on the design of nano scale quantum systems to achieve photon emitter/resonator theory in the plasmon-exciton hybrid systems.
Among its many outstanding properties, graphene supports terahertz surface plasma waves -- sub-wavelength charge density oscillations connected with electromagnetic fields that are tightly localized near the surface[1,2]. When these waves are confine d to finite-sized graphene, plasmon resonances emerge that are characterized by alternating charge accumulation at the opposing edges of the graphene. The resonant frequency of such a structure depends on both the size and the surface charge density, and can be electrically tuned throughout the terahertz range by applying a gate voltage[3,4]. The promise of tunable graphene THz plasmonics has yet to be fulfilled, however, because most proposed optoelectronic devices including detectors, filters, and modulators[5-10] desire near total modulation of the absorption or transmission, and require electrical contacts to the graphene -- constraints that are difficult to meet using existing plasmonic structures. We report here a new class of plasmon resonance that occurs in a hybrid graphene-metal structure. The sub-wavelength metal contacts form a capacitive grid for accumulating charge, while the narrow interleaved graphene channels, to first order, serves as a tunable inductive medium, thereby forming a structure that is resonantly-matched to an incident terahertz wave. We experimentally demonstrate resonant absorption near the theoretical maximum in readily-available, large-area graphene, ideal for THz detectors and tunable absorbers. We further predict that the use of high mobility graphene will allow resonant THz transmission near 100%, realizing a tunable THz filter or modulator. The structure is strongly coupled to incident THz radiation, and solves a fundamental problem of how to incorporate a tunable plasmonic channel into a device with electrical contacts.
The lack of long range order in organic semiconductor thin films prevents the unveiling of the complete nature of excitons in optical experiments, because the diffraction limited beam diameters in the bandgap region far exceed typical crystalline gra in sizes. Here we present spatially-, temporally- and polarization-resolved dual photoluminescence/linear dichroism microscopy experiments that investigate exciton states within a single crystalline grain in solution-processed phthalocyanine thin films. These experiments reveal the existence of a delocalized singlet exciton, polarized along the high mobility axis in this quasi-1D electronic system. The strong delocalized {pi} orbitals overlap controlled by the molecular stacking along the high mobility axis is responsible for breaking the radiative recombination selection rules. Using our linear dichroism scanning microscopy setup we further established a rotation of molecules (i.e. a structural phase transition) that occurs above 100 K prevents the observation of this exciton at room temperature.
We address the question of how the time-resolved bulk Hall response of a two dimensional honeycomb lattice develops when driving the system with a pulsed perturbation. A simple toy model that switches a valley Hall signal by breaking inversion symmet ry is studied in detail for slow quasi-adiabatic ramps and sudden quenches, obtaining an oscillating dynamical response that depends strongly on doping and time-averaged values that are determined both by the out of equilibrium occupations and the Berry curvature of the final states. On the other hand, the effect of irradiating the sample with a circularly-polarized infrared pump pulse that breaks time reversal symmetry and thus ramps the system into a non-trivial topological regime is probed. Even though there is a non quantized average signal due to the break down of the Floquet adiabatical picture, some features of the photon-dressed topological bands are revealed to be present even in a few femtosecond timescale. Small frequency oscillations during the transient response evidence the emergence of dynamical Floquet gaps which are consistent with the instantaneous amplitude of the pump envelope. On the other hand, a characteristic heterodyining effect is manifested in the model. The presence of a remnant Hall response for ultra-short pulses that contain only a few cycles of the radiation field is briefly discussed.
224 - A. Satou , Y. Koseki , V. Ryzhii 2014
Coupling of plasmons in graphene at terahert (THz) frequencies with surface plasmons in a heavily-doped substrate is studied theoretically. We reveal that a huge scattering rate may completely damp out the plasmons, so that proper choices of material and geometrical parameters are essential to suppress the coupling effect and to obtain the minimum damping rate in graphene. Even with the doping concentration 10^{19} - 10^{20} cm^{-3} and the thickness of the dielectric layer between graphene and the substrate 100 nm, which are typical values in real graphene samples with a heavily-doped substrate, the increase in the damping rate is not negligible in comparison with the acoustic-phonon-limited damping rate. Dependence of the damping rate on wavenumber, thicknesses of graphene-to-substrate and gate-to-graphene separation, substrate doping concentration, and dielectric constants of surrounding materials are investigated. It is shown that the damping rate can be much reduced by the gate screening, which suppresses the field spread of the graphene plasmons into the substrate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا