ﻻ يوجد ملخص باللغة العربية
In this paper, we study Dorroh extensions of bialgebras and Hopf algebras. Let $(H,I)$ be both a Dorroh pair of algebras and a Dorroh pair of coalgebras. We give necessary and sufficient conditions for $Hltimes_dI$ to be a bialgebra and a Hopf algebra, respectively. We also describe all ideals of Dorroh extensions of algebras and subcoalgebras of Dorroh extensions of coalgebras and compute these ideals and subcoalgebras for some concrete examples.
In this article, we study Dorroh extensions of algebras and Dorroh extensions of coalgebras. Their structures are described. Some properties of these extensions are presented. We also introduce the finite duals of algebras and modules which are not n
It will be seen that if $H$ is a weak Hopf algebra in the definition of coaction of weak bialgebras on coalgebras cite{Wang}, then a definition property is suppressed giving rise to the (global) coactions of weak Hopf algebras on coalgebras. The next
A duality theorem of the bounded derived category of quasi-finite comodules over an artinian coalgebra is established. Let $A$ be a noetherian complete basic semiperfect algebra over an algebraically closed field, and $C$ be its dual coalgebra. If $A
This is an old paper put here for archeological purposes. We compute the second cohomology of current Lie algebras of the form $Lotimes A$, where $L$ belongs to some class of Lie algebras which includes classical simple and Zassenhaus algebras, and o
In this paper we study the theory of cleft extensions for a weak bialgebra H. Among other results, we determine when two unitary crossed products of an algebra A by H are equivalent and we prove that if H is a weak Hopf algebra, then the categories o