ترغب بنشر مسار تعليمي؟ اضغط هنا

A search for optical and near-infrared counterparts of the compact binary merger GW190814

76   0   0.0 ( 0 )
 نشر من قبل Aishwarya Linesh Thakur
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on our observing campaign of the compact binary merger GW190814, detected by the Advanced LIGO and Advanced Virgo detectors on August 14th, 2019. This signal has the best localisation of any observed gravitational wave (GW) source, with a 90% probability area of 18.5 deg$^2$, and an estimated distance of ~ 240 Mpc. We obtained wide-field observations with the Deca-Degree Optical Transient Imager (DDOTI) covering 88% of the probability area down to a limiting magnitude of $w$ = 19.9 AB. Nearby galaxies within the high probability region were targeted with the Lowell Discovery Telescope (LDT), whereas promising candidate counterparts were characterized through multi-colour photometry with the Reionization and Transients InfraRed (RATIR) and spectroscopy with the Gran Telescopio de Canarias (GTC). We use our optical and near-infrared limits in conjunction with the upper limits obtained by the community to constrain the possible electromagnetic counterparts associated with the merger. A gamma-ray burst seen along its jets axis is disfavoured by the multi-wavelength dataset, whereas the presence of a burst seen at larger viewing angles is not well constrained. Although our observations are not sensitive to a kilonova similar to AT2017gfo, we can rule out high-mass (> 0.1 M$_{odot}$) fast-moving (mean velocity >= 0.3c) wind ejecta for a possible kilonova associated with this merger.



قيم البحث

اقرأ أيضاً

We present a wide-field optical imaging search for electromagnetic counterparts to the likely neutron star - black hole (NS-BH) merger GW190814/S190814bv. This compact binary merger was detected through gravitational waves by the LIGO/Virgo interfero meters, with masses suggestive of a NS-BH merger. We imaged the LIGO/Virgo localization region using the MegaCam instrument on the Canada-France-Hawaii Telescope. We describe our hybrid observing strategy of both tiling and galaxy-targeted observations, as well as our image differencing and transient detection pipeline. Our observing campaign produced some of the deepest multi-band images of the region between 1.7 and 8.7 days post-merger, reaching a 5sigma depth of g > 22.8 (AB mag) at 1.7 days and i > 23.1 and i > 23.9 at 3.7 and 8.7 days, respectively. These observations cover a mean total integrated probability of 67.0% of the localization region. We find no compelling candidate transient counterparts to this merger in our images, which suggests that either the lighter object was tidally disrupted inside of the BHs innermost stable circular orbit, the transient lies outside of the observed sky footprint, or the lighter object is a low-mass BH. We use 5sigma source detection upper limits from our images in the NS-BH interpretation of this merger to constrain the mass of the kilonova ejecta to be Mej < 0.015Msun for a blue (kappa = 0.5 cm^2 g^-1) kilonova, and Mej < 0.04Msun for a red (kappa = 5-10 cm^2 g^-1) kilonova. Our observations emphasize the key role of large-aperture telescopes and wide-field imagers such as CFHT MegaCam in enabling deep searches for electromagnetic counterparts to gravitational wave events.
We present the results of our continued systematic search for near-infrared (NIR) candidate counterparts to ultraluminous X-ray sources (ULXs) within 10 Mpc. We observed 42 ULXs in 24 nearby galaxies and detected NIR candidate counterparts to 15 ULXs . Fourteen of these ULXs appear to have a single candidate counterpart in our images and the remaining ULX has 2 candidate counterparts. Seven ULXs have candidate counterparts with absolute magnitudes in the range between -9.26 and -11.18 mag, consistent with them being red supergiants (RSGs). The other eight ULXs have candidate counterparts with absolute magnitudes too bright to be a single stellar source. Some of these NIR sources show extended morphology or colours expected for Active Galactic Nuclei (AGN), strongly suggesting that they are likely stellar clusters or background galaxies. The red supergiant candidate counterparts form a valuable sample for follow-up spectroscopic observations to confirm their nature, with the ultimate goal of directly measuring the mass of the compact accretor that powers the ULX using binary Doppler shifts.
The first detection of a binary neutron star merger through gravitational waves and photons marked the dawn of multi-messenger astronomy with gravitational waves, and it greatly increased our insight in different fields of astrophysics and fundamenta l physics. However, many open questions on the physical process involved in a compact binary merger still remain and many of these processes concern plasma physics. With the second generation of gravitational wave interferometers approaching their design sensitivity, the new generation under design study, and new X-ray detectors under development, the high energy Universe will become more and more a unique laboratory for our understanding of plasma in extreme conditions. In this review, we discuss the main electromagnetic signals expected to follow the merger of two compact objects highlighting the main physical processes involved and some of the most important open problems in the field.
104 - Manuel Arca Sedda 2021
We investigate the possible dynamical origin of GW190814, a gravitational wave (GW) source discovered by the LIGO-Virgo-Kagra collaboration (LVC) associated with a merger between a stellar black hole (BH) with mass $23.2$ M$_odot$ and a compact objec t, either a BH or a neutron star (NS), with mass $2.59$ M$_odot$. Using a database of 240,000 $N$-body simulations modelling the formation of NS-BH mergers via dynamical encounters in dense clusters, we find that systems like GW190814 are likely to form in young, metal-rich clusters. Our model suggests that a little excess ($sim 2-4%$) of objects with masses in the range $2.3-3$ M$_odot$ in the compact remnants mass spectrum leads to a detection rate for dynamically formed GW190814 -like mergers of $Gamma_{rm GW190814} simeq 1-6$ yr Gpc$^{-3}$, i.e. within the observational constraints set by the GW190814 discovery, $Gamma_{rm LVC} sim 1-23$ yr Gpc$^{-3}$. Additionally, our model suggests that $sim 1.8-4.8%$ of dynamical NS-BH mergers are compatible with GW190426_152155, the only confirmed NS-BH merger detected by the LVC. We show that the relative amount of light and heavy NS-BH mergers can provide clues about the environments in which they developed.
We present optical follow-up imaging obtained with the Katzman Automatic Imaging Telescope, Las Cumbres Observatory Global Telescope Network, Nickel Telescope, Swope Telescope, and Thacher Telescope of the LIGO/Virgo gravitational wave (GW) signal fr om the neutron star-black hole (NSBH) merger GW190814. We searched the GW190814 localization region (19 deg$^{2}$ for the 90th percentile best localization), covering a total of 51 deg$^{2}$ and 94.6% of the two-dimensional localization region. Analyzing the properties of 189 transients that we consider as candidate counterparts to the NSBH merger, including their localizations, discovery times from merger, optical spectra, likely host-galaxy redshifts, and photometric evolution, we conclude that none of these objects are likely to be associated with GW190814. Based on this finding, we consider the likely optical properties of an electromagnetic counterpart to GW190814, including possible kilonovae and short gamma-ray burst afterglows. Using the joint limits from our follow-up imaging, we conclude that a counterpart with an $r$-band decline rate of 0.68 mag day$^{-1}$, similar to the kilonova AT 2017gfo, could peak at an absolute magnitude of at most $-17.8$ mag (50% confidence). Our data are not constraining for red kilonovae and rule out blue kilonovae with $M>0.5 M_{odot}$ (30% confidence). We strongly rule out all known types of short gamma-ray burst afterglows with viewing angles $<$17$^{circ}$ assuming an initial jet opening angle of $sim$$5.2^{circ}$ and explosion energies and circumburst densities similar to afterglows explored in the literature. Finally, we explore the possibility that GW190814 merged in the disk of an active galactic nucleus, of which we find four in the localization region, but we do not find any candidate counterparts among these sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا