ﻻ يوجد ملخص باللغة العربية
Small-scale magnetic flux ropes (SFRs) are a type of structures in the solar wind that possess helical magnetic field lines. In a recent report (Chen & Hu 2020), we presented the radial variations of the properties of SFR from 0.29 to 8 au using in situ measurements from the Helios, ACE/Wind, Ulysses, and Voyager spacecraft. With the launch of the Parker Solar Probe (PSP), we extend our previous investigation further into the inner heliosphere. We apply a Grad-Shafranov-based algorithm to identify SFRs during the first two PSP encounters. We find that the number of SFRs detected near the Sun is much less than that at larger radial distances, where magnetohydrodynamic (MHD) turbulence may act as the local source to produce these structures. The prevalence of Alfvenic structures significantly suppresses the detection of SFRs at closer distances. We compare the SFR event list with other event identification methods, yielding a dozen well-matched events. The cross-section maps of two selected events confirm the cylindrical magnetic flux rope configuration. The power-law relation between the SFR magnetic field and heliocentric distances seems to hold down to 0.16 au.
We systematically search for magnetic flux rope structures in the solar wind to within the closest distance to the Sun of 0.13 AU, using data from the third and fourth orbits of the Parker Solar Probe. We extend our previous magnetic helicity based t
We examine Alfven Wave Solar atmosphere Model (AWSoM) predictions of the first Parker Solar Probe (PSP) encounter. We focus on the 12-day closest approach centered on the 1st perihelion. AWSoM (van der Holst et al., 2014) allows us to interpret the P
We present a statistical analysis for the characteristics and radial evolution of linear magnetic holes (LMHs) in the solar wind from 0.166 to 0.82 AU using Parker Solar Probe observations of the first two orbits. It is found that the LMHs mainly hav
Parker Solar Probe (PSP), NASAs latest and closest mission to the Sun, is on a journey to investigate fundamental enigmas of the inner heliosphere. This paper reports initial observations made by the Solar Probe Analyzer for Ions (SPAN-I), one of the
The slow solar wind is typically characterized as having low Alfvenicity. However, Parker Solar Probe (PSP) observed predominately Alfvenic slow solar wind during several of its initial encounters. From its first encounter observations, about 55.3% o