ﻻ يوجد ملخص باللغة العربية
Since we still lack a theory of classical turbulence, attention has focused on the conceptually simpler turbulence in quantum fluids. Can such systems of identical singly-quantized vortices provide a physically accessible toy model of the classical counterpart? That said, we have hitherto lacked detectors capable of the real-time, non-invasive probing of the wide range of length scales involved in quantum turbulence. However, we demonstrate here the real-time detection of quantum vortices by a nanoscale resonant beam in superfluid $^4$He at 10 mK. The basic idea is that we can trap a single vortex along the length of a nanobeam and observe the transitions as a vortex is either trapped or released, which we observe through the shift in the resonant frequency of the beam. With a tuning fork source, we can control the ambient vorticity density and follow its influence on the vortex capture and release rates. But, most important, we show that these devices are capable of probing turbulence on the micron scale.
Unwanted fluctuations over time, in short, noise, are detrimental to device performance, especially for quantum coherent circuits. Recent efforts have demonstrated routes to utilizing magnon systems for quantum technologies, which are based on interf
We investigate the basic charge and heat transport properties of charge neutral epigraphene at sub-kelvin temperatures, demonstrating nearly logarithmic dependence of electrical conductivity over more than two decades in temperature. Using graphenes
We examine the nature of the transitions between the normal and the superconducting branches of superconductor-graphene-superconductor Josephson junctions. We attribute the hysteresis between the switching (superconducting to normal) and retrapping (
We report experimental observation of an unexpectedly large thermopower in mesoscopic two-dimensional (2D) electron systems on GaAs/AlGaAs heterostructures at sub-Kelvin temperatures and zero magnetic field. Unlike conventional non-magnetic high-mobi
We present a simple on-chip electronic thermometer with the potential to operate down to 1 mK. It is based on transport through a single normal-metal - superconductor tunnel junction with rapidly widening leads. The current through the junction is de