ترغب بنشر مسار تعليمي؟ اضغط هنا

On the intermediate long wave propagation for internal waves in the presence of currents

92   0   0.0 ( 0 )
 نشر من قبل Rossen Ivanov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A model for the wave motion of an internal wave in the presence of current in the case of intermediate long wave approximation is studied. The lower layer is considerably deeper, with a higher density than the upper layer. The flat surface approximation is assumed. The fluids are incompressible and inviscid. The model equations are obtained from the Hamiltonian formulation of the dynamics in the presence of a depth-varying current. It is shown that an appropriate scaling leads to the integrable Intermediate Long Wave Equation (ILWE). Two limits of the ILWE leading to the integrable Benjamin-Ono and KdV equations are presented as well.



قيم البحث

اقرأ أيضاً

65 - Rossen Ivanov 2017
We examine a two dimensional fluid system consisting of a lower medium bounded underneath by a flatbed and an upper medium with a free surface. The two media are separated by a free common interface. The gravity driven surface and internal water wave s (at the common interface between the media) in the presence of a depth-dependent current are studied under certain physical assumptions. Both media are considered incompressible and with prescribed vorticities. Using the Hamiltonian approach the Hamiltonian of the system is constructed in terms of wave variables and the equations of motion are calculated. The resultant equations of motion are then analysed to show that wave-current interaction is influenced only by the current profile in the strips adjacent to the surface and the interface. Small amplitude and long-wave approximations are also presented.
A two-dimensional water wave system is examined consisting of two discrete incompressible fluid domains separated by a free common interface. In a geophysical context this is a model of an internal wave, formed at a pycnocline or thermocline in the o cean. The system is considered as being bounded at the bottom and top by a flatbed and wave-free surface respectively. A current profile with depth-dependent currents in each domain is considered. The Hamiltonian of the system is determined and expressed in terms of canonical wave-related variables. Limiting behaviour is examined and compared to that of other known models. The linearised equations as well as long-wave approximations are presented.
We experimentally investigate internal coastal Kelvin waves in a two-layer fluid system on a rotating table. Waves in our system propagate in the prograde direction and are exponentially localized near the boundary. Our experiments verify the theoret ical dispersion relation of the wave and show that the wave amplitude decays exponentially along the propagation direction. We further demonstrate that the waves can robustly propagate along boundaries of complex geometries without being scattered and that adding obstacles to the wave propagation path does not cause additional attenuation.
383 - Darryl D. Holm , Ruiao Hu 2020
This paper introduces an energy-preserving stochastic model for studying wave effects on currents in the ocean mixing layer. The model is called stochastic forcing by Lie transport (SFLT). The SFLT model is derived here from a stochastic constrained variational principle, so it has a Kelvin circulation theorem. The examples of SFLT given here treat 3D Euler fluid flow, rotating shallow water dynamics and the Euler-Boussinesq equations. In each example, one sees the effect of stochastic Stokes drift and material entrainment in the generation of fluid circulation. We also present an Eulerian-averaged SFLT model (EA SFLT), based on decomposing the Eulerian solutions of the energy-conserving SFLT model into sums of their expectations and fluctuations.
Nonlinear dynamics of surface gravity waves trapped by an opposing jet current is studied analytically and numerically. For wave fields narrowband in frequency but not necessarily with narrow angular distributions the developed asymptotic weakly nonl inear theory based on the modal approach of (V. Shrira, A. Slunyaev, J. Fluid. Mech, 738, 65, 2014) leads to the one-dimensional modified nonlinear Schr{o}dinger equation of self-focusing type for a single mode. Its solutions such as envelope solitons and breathers are considered to be prototypes of rogue waves; these solutions, in contrast to waves in the absence of currents, are robust with respect to transverse perturbations, which suggests potentially higher probability of rogue waves. Robustness of the long-lived analytical solutions in form of the modulated trapped waves and solitary wave groups is verified by direct numerical simulations of potential Euler equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا