ﻻ يوجد ملخص باللغة العربية
Motivated by the recent discovery of superconductivity in square-planar nickelates as well as by longstanding puzzling experiments in heavy-fermion superconductors, we study Cooper pairing between correlated $d$-electrons coupled to a band of weakly-correlated electrons. We perform self-consistent large N calculations on an effective $t-J$ model for the $d$-electrons with additional hybridization. Unlike previous studies of mixed-valent systems, we focus on parameter regimes where both hybridized bands are relevant to determining the pairing symmetry. For sufficiently strong hybridization, we find a robust $s+id$ pairing which breaks time-reversal and point-group symmetries in the mixed-valent regime. Our results illustrate how intrinsically multi-band systems such as heavy-fermions can support a number of highly non-trivial pairing states. They also provide a putative microscopic realization of previous phenomenological proposals of $s+id$ pairing and suggest a potential resolution to puzzling experiments in heavy-fermion superconductors such as U$_{1-x}$Th$_x$Be$_{13}$ which exhibit two superconducting phase transitions and a full gap at lower temperatures.
We study the interlayer pairing states in layered systems of two different 2d electronic subsystems, one with relativistic linear and the other with non-relativistic parabolic spectrum. The complex order parameter of the paired state has a two compon
Observation of robust superconductivity in some of the iron based superconductors in the vicinity of a Lifshitz point where a spin density wave instability is suppressed as the {hole} band drops below the Fermi energy raise questions for spin-fluctua
We report specific heat capacity measurements on a LiFeAs single crystal at temperatures down to 400 mK and magnetic fields up to 9 Tesla. A small specific heat jump at Tc and finite residual density of states at T=0 K in the superconducting (SC) sta
We report a combined theoretical and experimental investigation of the superconducting state in the quasi-two-dimensional organic superconductor $kappa$-(ET)$_2$Cu[N(CN)$_2$]Br. Applying spin-fluctuation theory to a low-energy material-specific Hamil
Motivated by recent proposals of correlation induced insensitivity of d-wave superconductors to impurities, we develop a simple pairing theory for these systems for up to a moderate strength of disorder. Our description implements the key ideas of An