ﻻ يوجد ملخص باللغة العربية
Deep convolutional neural networks (CNNs) with strong expressive ability have achieved impressive performances on single image super-resolution (SISR). However, their excessive amounts of convolutions and parameters usually consume high computational cost and more memory storage for training a SR model, which limits their applications to SR with resource-constrained devices in real world. To resolve these problems, we propose a lightweight enhanced SR CNN (LESRCNN) with three successive sub-blocks, an information extraction and enhancement block (IEEB), a reconstruction block (RB) and an information refinement block (IRB). Specifically, the IEEB extracts hierarchical low-resolution (LR) features and aggregates the obtained features step-by-step to increase the memory ability of the shallow layers on deep layers for SISR. To remove redundant information obtained, a heterogeneous architecture is adopted in the IEEB. After that, the RB converts low-frequency features into high-frequency features by fusing global and local features, which is complementary with the IEEB in tackling the long-term dependency problem. Finally, the IRB uses coarse high-frequency features from the RB to learn more accurate SR features and construct a SR image. The proposed LESRCNN can obtain a high-quality image by a model for different scales. Extensive experiments demonstrate that the proposed LESRCNN outperforms state-of-the-arts on SISR in terms of qualitative and quantitative evaluation. The code of LESRCNN is accessible on https://github.com/hellloxiaotian/LESRCNN.
Recently, the single image super-resolution (SISR) approaches with deep and complex convolutional neural network structures have achieved promising performance. However, those methods improve the performance at the cost of higher memory consumption,
Single Image Super-Resolution (SISR) tasks have achieved significant performance with deep neural networks. However, the large number of parameters in CNN-based methods for SISR tasks require heavy computations. Although several efficient SISR models
Recently, deep convolutional neural network methods have achieved an excellent performance in image superresolution (SR), but they can not be easily applied to embedded devices due to large memory cost. To solve this problem, we propose a pyramidal d
We introduce a simple and efficient lossless image compression algorithm. We store a low resolution version of an image as raw pixels, followed by several iterations of lossless super-resolution. For lossless super-resolution, we predict the probabil
We present SR3, an approach to image Super-Resolution via Repeated Refinement. SR3 adapts denoising diffusion probabilistic models to conditional image generation and performs super-resolution through a stochastic denoising process. Inference starts