ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetoelectric effect arising from a field-induced pseudo Jahn-Teller distortion in a rare earth magnet

75   0   0.0 ( 0 )
 نشر من قبل Minseong Lee
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetoelectric materials are attractive for several applications, including actuators, switches, and magnetic field sensors. Typical mechanisms for achieving a strong magnetoelectric coupling are rooted in transition metal magnetism. In sharp contrast, here we identify CsEr(MoO4)2 as a magnetoelectric material without magnetic transition metal ions, thus ensuring that the Er ions play a key role in achieving this interesting property. Our detailed study includes measurements of the structural, magnetic, and electric properties of this material. Bulk characterization and neutron powder diffraction show no evidence for structural phase transitions down to 0.3 K and therefore CsEr(MoO4)2 maintains the room temperature P2/c space group over a wide temperature range without external magnetic field. These same measurements also identify collinear antiferromagnetic ordering of the Er3+ moments below TN = 0.87 K. Complementary dielectric constant and pyroelectric current measurements reveal that a ferroelectric phase (P ~ 0.5 nC/cm2) emerges when applying a modest external magnetic field, which indicates that this material has a strong magnetoelectric coupling. We argue that the magnetoelectric coupling in this system arises from a pseudo Jahn-Teller distortion induced by the magnetic field.

قيم البحث

اقرأ أيضاً

226 - L. Weymann , L. Bergen , Th. Kain 2020
Violation of time reversal and spatial inversion symmetries has profound consequences for elementary particles and cosmology. Spontaneous breaking of these symmetries at phase transitions gives rise to unconventional physical phenomena in condensed m atter systems, such as ferroelectricity induced by magnetic spirals, electromagnons, non-reciprocal propagation of light and spin waves, and the linear magnetoelectric (ME) effect - the electric polarization proportional to the applied magnetic field and the magnetization induced by the electric field. Here, we report the experimental study of the holmium-doped langasite, Ho$_{x}$La$_{3-x}$Ga$_5$SiO$_{14}$, showing a puzzling combination of linear and highly non-linear ME responses in the disordered paramagnetic state: its electric polarization grows linearly with the magnetic field but oscillates many times upon rotation of the magnetic field vector. We propose a simple phenomenological Hamiltonian describing this unusual behavior and derive it microscopically using the coupling of magnetic multipoles of the rare-earth ions to the electric field.
282 - S. Dong , S. Dai , X.Y. Yao 2005
The charge order of CE phase in half-doped manganites is studied, based on an argument that the charge-ordering is caused by the Jahn-Teller distortions of MnO6 octahedra rather than Coulomb repulsion between electrons. The uantitative calculation on the ferromagnetic zigzag chain as the basic structure unit of CE phase within the framework of two-orbital double exchange model including Jahn-Teller effect is performed, and it is shown that the charge-disproportionation of Mn cations in the charge-ordered CE phase is less than 13%. In addition, we predict the negative charge-disproportionation once the Jahn-Teller effect is weak enough.
The first known magnetic mineral, magnetite (Fe$_3$O$_4$), has unusual properties which have fascinated mankind for centuries; it undergoes the Verwey transition at $T_{rm V}$ $sim$120 K with an abrupt change in structure and electrical conductivity. The mechanism of the Verwey transition however remains contentious. Here we use resonant inelastic X-ray scattering (RIXS) over a wide temperature range across the Verwey transition to identify and separate out the magnetic excitations derived from nominal Fe$^{2+}$ and Fe$^{3+}$ states. Comparison of the RIXS results with crystal-field multiplet calculations shows that the spin-orbital $dd$ excitons of the Fe$^{2+}$ sites arise from a tetragonal Jahn-Teller active polaronic distortion of the Fe$^{2+}$O$_6$ octahedra. These low-energy excitations, which get weakened for temperatures above 350 K but persist at least up to 550 K, are distinct from optical excitations and best explained as magnetic polarons.
117 - F. Virot , R. Hayn , A. Boukortt 2010
We present an ab-initio and analytical study of the Jahn-Teller effect in two diluted magnetic semiconductors (DMS) with d4 impurities, namely Mn-doped GaN and Cr-doped ZnS. We show that only the combined treatment of Jahn-Teller distortion and stron g electron correlation in the 3d shell may lead to the correct insulating electronic structure. Using the LSDA+U approach we obtain the Jahn-Teller energy gain in reasonable agreement with the available experimental data. The ab-initio results are completed by a more phenomenological ligand field theory.
The consequences of the Jahn-Teller (JT) orbital-lattice coupling for magnetism of pseudospin J_{eff}=1/2 and J_{eff}=0 compounds are addressed. In the former case, represented by Sr_2IrO_4, this coupling generates, through the so-called pseudo-JT ef fect, orthorhombic deformations of a crystal concomitant with magnetic ordering. The orthorhombicity axis is tied to the magnetization and rotates with it under magnetic field. The theory resolves a number of puzzles in Sr_2IrO_4 such as the origin of in-plane magnetic anisotropy and magnon gaps, metamagnetic transition, etc. In J_{eff}=0 systems, the pseudo-JT effect leads to spin-nematic transition well above magnetic ordering, which may explain the origin of `orbital order in Ca_2RuO_4
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا