ترغب بنشر مسار تعليمي؟ اضغط هنا

The ALMA-PILS survey: First detection of the unsaturated 3-carbon molecules Propenal (C$_2$H$_3$CHO) and Propylene (C$_3$H$_6$) towards IRAS 16293$-$2422 B

67   0   0.0 ( 0 )
 نشر من قبل S\\'ebastien Manigand
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Manigand




اسأل ChatGPT حول البحث

Complex organic molecules with three carbon atoms are found in the earliest stages of star formation. In particular, propenal (C$_2$H$_3$CHO) is a species of interest due to its implication in the formation of more complex species and even biotic molecules. This study aims to search for the presence of C$_2$H$_3$CHO and other three-carbon species such as propylene (C$_3$H$_6$) in the hot corino region of the low-mass protostellar binary IRAS 16293--2422 to understand their formation pathways. We use ALMA observations in Band 6 and 7 from various surveys to search for the presence of C$_3$H$_6$ and C$_2$H$_3$CHO towards the protostar IRAS 16293--2422 B (IRAS 16293B). We report the detection of both C$_3$H$_6$ and C$_2$H$_3$CHO towards IRAS 16293B, however, no unblended lines were found towards the other component of the binary system, IRAS 16293A. We derive column density upper limits for C$_3$H$_8$, HCCCHO, n-C$_3$H$_7$OH, i-C$_3$H$_7$OH, C$_3$O, and cis-HC(O)CHO towards IRAS 16293B. We then use a three-phase chemical model to simulate the formation of these species in a typical prestellar environment followed by its hydrodynamical collapse until the birth of the central protostar. Different formation paths, such as successive hydrogenation and radical-radical additions on grain surfaces, are tested and compared to the observational results. The simulations reproduce the abundances within one order of magnitude from those observed towards IRAS 16293B, with the best agreement found for a rate of $10^{-12}$ cm$^3$ s$^{-1}$ for the gas-phase reaction C$_3$ + O $rightarrow$ C$_2$ + CO. Successive hydrogenations of C$_3$, HC(O)CHO, and CH$_3$OCHO on grain surfaces are a major and crucial formation route of complex organics molecules, whereas both successive hydrogenation pathways and radical-radical addition reactions contribute to the formation of C$_2$H$_5$CHO.



قيم البحث

اقرأ أيضاً

Context. The Class 0 protostellar binary IRAS 16293-2422 is an interesting target for (sub)millimeter observations due to, both, the rich chemistry toward the two main components of the binary and its complex morphology. Its proximity to Earth allows the study of its physical and chemical structure on solar system scales using high angular resolution observations. Such data reveal a complex morphology that cannot be accounted for in traditional, spherical 1D models of the envelope. Aims. The purpose of this paper is to study the environment of the two components of the binary through 3D radiative transfer modeling and to compare with data from the Atacama Large Millimeter/submillimeter Array. Such comparisons can be used to constrain the protoplanetary disk structures, the luminosities of the two components of the binary and the chemistry of simple species. Methods. We present 13CO, C17O and C18O J=3-2 observations from the ALMA Protostellar Interferometric Line Survey (PILS), together with a qualitative study of the dust and gas density distribution of IRAS 16293-2422. A 3D dust and gas model including disks and a dust filament between the two protostars is constructed which qualitatively reproduces the dust continuum and gas line emission. Results and conclusions. Radiative transfer modeling of source A and B, with the density solution of an infalling, rotating collapse or a protoplanetary disk model, can match the constraints for the disk-like emission around source A and B from the observed dust continuum and CO isotopologue gas emission. If a protoplanetary disk model is used around source B, it has to have an unusually high scale-height in order to reach the dust continuum peak emission value, while fulfilling the other observational constraints. Our 3D model requires source A to be much more luminous than source B; LA ~ 18 $L_odot$ and LB ~ 3 $L_odot$.
The evolutionary past of our Solar System can be pieced together by comparing analogous low-mass protostars with remnants of our Protosolar Nebula - comets. Sulphur-bearing molecules may be unique tracers of the joint evolution of the volatile and re fractory components. ALMA Band 7 data from the large unbiased Protostellar Interferometric Line Survey (PILS) are used to search for S-bearing molecules in the outer disc-like structure, 60 au from IRAS 16293-2422 B, and are compared with data on 67P/C-G stemming from the ROSINA instrument aboard Rosetta. Species such as SO$_{2}$, SO, OCS, CS, H$_{2}$CS, H$_{2}$S and CH$_{3}$SH are detected via at least one of their isotopologues towards IRAS 16293-2422 B. The search reveals a first-time detection of OC$^{33}$S towards this source and a tentative first-time detection of C$^{36}$S towards a low-mass protostar. The data show that IRAS 16293-2422 B contains much more OCS than H$_{2}$S in comparison to 67P/C-G; meanwhile, the SO/SO$_{2}$ ratio is in close agreement between the two targets. IRAS 16293-2422 B has a CH$_{3}$SH/H$_{2}$CS ratio in range of that of our Solar System (differences by a factor of 0.7-5.3). It is suggested that the levels of UV radiation during the initial collapse of the systems may have varied and have potentially been higher for IRAS 16293-2422 B due to its binary nature; thereby, converting more H$_{2}$S into OCS. It remains to be conclusively tested if this also promotes the formation of S-bearing complex organics. Elevated UV levels of IRAS 16293-2422 B and a warmer birth cloud of our Solar System may jointly explain the variations between the two low-mass systems.
The precursors to larger, biologically-relevant molecules are detected throughout interstellar space, but determining the presence and properties of these molecules during planet formation requires observations of protoplanetary disks at high angular resolution and sensitivity. Here we present 0.3 observations of HC$_3$N, CH$_3$CN, and $c$-C$_3$H$_2$ in five protoplanetary disks observed as part of the Molecules with ALMA at Planet-forming Scales (MAPS) Large Program. We robustly detect all molecules in four of the disks (GM Aur, AS 209, HD 163296 and MWC 480) with tentative detections of $c$-C$_3$H$_2$ and CH$_3$CN in IM Lup. We observe a range of morphologies -- central peaks, single or double rings -- with no clear correlation in morphology between molecule nor disk. Emission is generally compact and on scales comparable with the millimetre dust continuum. We perform both disk-integrated and radially-resolved rotational diagram analysis to derive column densities and rotational temperatures. The latter reveals 5-10 times more column density in the inner 50-100 au of the disks when compared with the disk-integrated analysis. We demonstrate that CH$_3$CN originates from lower relative heights in the disks when compared with HC$_3$N, in some cases directly tracing the disk midplane. Finally, we find good agreement between the ratio of small to large nitriles in the outer disks and comets. Our results indicate that the protoplanetary disks studied here are host to significant reservoirs of large organic molecules, and that this planet- and comet-building material can be chemically similar to that in our own Solar System. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement Series.
265 - Laurent Loinard 2012
We present ALMA and VLA observations of the molecular and ionized gas at 0.1-0.3 arcsec resolution in the Class 0 protostellar system IRAS 16293-2422. These data clarify the origins of the protostellar outflows from the deeply embedded sources in thi s complex region. Source A2 is confirmed to be at the origin of the well known large scale north-east--south-west flow. The most recent VLA observations reveal a new ejection from that protostar, demonstrating that it drives an episodic jet. The central compact part of the other known large scale flow in the system, oriented roughly east-west, is well delineated by the CO(6-5) emission imaged with ALMA and is confirmed to be driven from within component A. Finally, a one-sided blueshifted bubble-like outflow structure is detected here for the first time from source B to the north-west of the system. Its very short dynamical timescale (~ 200 yr), low velocity, and moderate collimation support the idea that source B is the youngest object in the system, and possibly one of the youngest protostars known.
Methyl mercaptan (also known as methanethiol), CH3SH, has been found in the warm and dense parts of high -- as well as low -- mass star-forming regions. The aim of the present study is to obtain accurate spectroscopic parameters of the S-deuterated m ethyl mercaptan CH$_3$SD to facilitate astronomical observations by radio telescope arrays at (sub)millimeter wavelengths. We have measured the rotational spectrum associated with the large-amplitude internal rotation of the methyl group of methyl mercaptan using an isotopically enriched sample in the 150-510 GHz frequency range using the Koln millimeter wave spectrometer. The analysis of the spectra has been performed up to the second excited torsional state. We present modeling results of these data with the RAM36 program. CH$_3$SD was searched for, but not detected, in data from the Atacama Large Millimeter/submillimeter Array (ALMA) Protostellar Interferometric Line Survey (PILS) of the deeply embedded protostar IRAS 16293-2422. The derived upper limit corresponds to a degree of deuteration of at most ~18%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا