ترغب بنشر مسار تعليمي؟ اضغط هنا

Crystallization of GeO2 thin films into alpha-quartz: from spherulites to single crystals

83   0   0.0 ( 0 )
 نشر من قبل Silang Zhou
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Piezoelectric quartz SiO2 crystals are widely used in industry as oscillators. As a natural mineral, quartz and its relevant silicates are also of interest of geoscience and mineralogy. However, the nucleation and growth of quartz crystals is difficult to control and not fully understood. Here we report successful solid state crystallization of thin film of amorphous GeO2 into quartz on various substrates including Al2O3, MgAl2O4, MgO, LaAlO3 and SrTiO3. At relatively low annealing temperatures, the crystallization process is spherulitic: with fibers growing radially from the nucleation centers and the crystal lattice rotating along the growth direction with a linear dependence between the rotation angle and the distance to the core. For increasingly higher annealing temperatures, quartz crystals begin to form. The edges of the sample play an important role facilitating nucleation followed by growth sweeping inward until the whole film is crystallized. Control of the growth allows single crystalline quartz to be synthesized. Our study reveals the complexity of the nucleation and growth process of quartz and provides insight for further studies.



قيم البحث

اقرأ أيضاً

The crystallographic orientation of SrIrO3 surfaces is decisive for the occurrence of topological surface states. We show from DFT computations that (001) and (110) free surfaces have comparable energies, and, correspondingly, we experimentally obser ve that single micro-crystals exhibit both facet orientations. These surfaces are found to relax over typically the length of one oxygen octahedron, defining a structural critical thickness for thin films. A reconstruction of the electronic density associated to tilts of the oxygen octahedra is observed. On the other hand, thin films have invariably been reported to grow along the (110) direction. We show that the interfacial energy associated to the oxygen octahedra distortion for epitaxy is likely at the origin of this specific feature, and propose leads to induce (001) SrIrO3 growth.
To obtain crystalline thin films of alpha-Quartz represents a challenge due to the tendency for the material towards spherulitic growth. Thus, understanding the mechanisms that give rise to spherulitic growth can help regulate the growth process. Her e the spherulitic type of 2D crystal growth in thin amorphous Quartz films was analyzed by electron back-scatter diffraction (EBSD). EBSD was used to measure the size, orientation, and rotation of crystallographic grains in polycrystalline SiO2 and GeO2 thin films with high spatial resolution. Individual spherulitic Quartz crystal colonies contain primary and secondary single crystal fibers, which grow radially from the colony center towards its edge, and fill a near circular crystalline area completely. During their growth, individual fibers form so-called rotational crystals, when some lattice planes are continuously bent. The directions of the lattice rotation axes in the fibers were determined by an enhanced analysis of EBSD data. A possible mechanism, including the generation of the particular type of dislocation(s), is suggested.
127 - L. Riney , C. Bunker , S.-K. Bac 2020
SrxBi2Se3 is a candidate topological superconductor but its superconductivity requires the intercalation of Sr by into the van-der-Waals gaps of Bi2Se3. We report the synthesis of SrxBi2Se3 thin films by molecular beam epitaxy, and we characterize th eir structural, vibrational and electrical properties. X-ray diffraction and Raman spectroscopy show evidence of substitutional Sr alloying into the structure, while transport measurements allow us to correlate the increasing Sr content with an increased n-type doping, but do not reveal superconductivity down to 1.5K. Our results suggest that Sr predominantly occupies sites within a quintuple layer, simultaneously substituting for Bi and as an interstitial. Our results motivate future density functional studies to further investigate the energetics of Sr substitution into Bi2Se3.
Graphene is a 2D material that displays excellent electronic transport properties with prospective applications in many fields. Inducing and controlling magnetism in the graphene layer, for instance by proximity of magnetic materials, may enable its utilization in spintronic devices. This paper presents fabrication and detailed characterization of single-layer graphene formed on the surface of epitaxial FeRh thin films. The magnetic state of the FeRh surface can be controlled by temperature, magnetic field or strain due to interconnected order parameters. Characterization of graphene layers by X-ray Photoemission and X-ray Absorption Spectroscopy, Low-Energy Ion Scattering, Scanning Tunneling Microscopy, and Low-Energy Electron Microscopy shows that graphene is single-layer, polycrystalline and covers more than 97% of the substrate. Graphene displays several preferential orientations on the FeRh(001) surface with unit vectors of graphene rotated by 30{deg}, 15{deg}, 11{deg}, and 19{deg} with respect to FeRh substrate unit vectors. In addition, the graphene layer is capable to protect the films from oxidation when exposed to air for several months. Therefore, it can be also used as a protective layer during fabrication of magnetic elements or as an atomically thin spacer, which enables incorporation of switchable magnetic layers within stacks of 2D materials in advanced devices.
Ferroelectric semiconductor field effect transistors (FeSmFETs), which employ ferroelectric semiconducting thin crystals of {alpha}-In2Se3 as the channel material as opposed to the gate dielectric in conventional ferroelectric FETs (FeFETs) were prep ared and measured from room to the liquid-helium temperatures. These FeSmFETs were found to yield evidence for the reorientation of the electrical polarization and an electric field induced metallic state in {alpha}-In2Se3. Our findings suggest that FeSmFETs can serve as a platform for the fundamental study of ferroelectric metals as well as the exploration of the integration of data storage and logic operations in the same device.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا