ﻻ يوجد ملخص باللغة العربية
A lithium-doped magnesium hydride Li$_2$MgH$_{16}$ was recently reported [Y. Sun $et$ $al$., Phys. Rev. Lett. {bf 123}, 097001 (2019)] to exhibit the highest ever predicted superconducting transition temperature $T_{rm c}$ under high pressure. Based on first-principles density-functional theory calculations, we reveal that the Li dopants locating in the pyroclore lattice sites give rise to the excess electrons distributed in interstitial regions. Such loosely bound anionic electrons are easily captured to stabilize a clathrate structure consisting of H cages. This addition of anionic electrons to H cages enhances the H-derived electronic density of states at the Fermi level, thereby leading to a high-$T_{rm c}$ superconductivity. We thus propose that the electride nature of Li dopants is an essential ingredient in the charge transfer between Li dopants and H atoms. Our findings offer a deeper understanding of the underlying mechanism of charge transfer in Li$_2$MgH$_{16}$ at high pressure.
The Fermi surface topology of $cI$16 Li at high pressures is studied using a recently developed first-principles unfolding method. We find the occurrence of a Lifshitz transition at $sim$43 GPa, which explains the experimentally observed anomalous on
We investigate the possibility of achieving high-temperature superconductivity in hydrides under pressure by inducing metallization of otherwise insulating phases through doping, a path previously used to render standard semiconductors superconductin
This work investigates the high-pressure structure of freestanding superconducting ($T_{c}$ = 4.3,K) boron doped diamond (BDD) and how it affects the electronic and vibrational properties using Raman spectroscopy and x-ray diffraction in the 0-30,GPa
In this work, we show that the same theoretical tools that successfully explain other hydrides systems under pressure seem to be at odds with the recently claimed conventional room temperature superconductivity of the carbonaceous sulfur hydride. We
Polycrystalline Eu0.5La0.5BiS2F was synthesized by solid state reaction which crystallizes in the tetragonal CeOBiS2 structure (P4/nmm). We report here enhancement of Tc to 2.2 K in Eu0.5La0.5BiS2F (by electron doping in EuBiS2F with Tc ~ 0.3 K). Eu0