ﻻ يوجد ملخص باللغة العربية
It is well known since 2010 that fullerene C60 is widespread through the interstellar space. Also, it is well known that graphene is a source material for synthesizing fullerene. Here, we simply assume the occurrence of graphene in space. Infrared spectra of graphene molecules are calculated to compare both to astronomical observational spectra and to laboratory experimental one. Model molecules for DFT calculation are selected by one astronomical assumption, that is, single void in charge neutral graphene of C13, C24 and C54, resulting C12, C23 and C53. They have a carbon pentagon ring within a hexagon network. Different void positions are classified as different species. Single void is surrounded by 3 radical carbons, holding 6 spins. Spin state affects molecular configuration and vibrational spectrum. It was a surprise that the triplet state is stable than the singlet. Most of charge neutral and triplet spin state species show closely resembling spectra with observed one of carbon rich planetary nebulae Tc1 and Lin49. We could assign major bands at 18.9 micrometer, and sub-bands at 6.6, 7.0, 7.6, 8.1, 8.5, 9.0 and 17.4 micrometer. It is interesting that those graphene species were also assigned in the laboratory experiments on laser-induced carbon plasma, which are analogies of carbon cluster creation in space. The conclusion is that graphene molecules could potentially contribute to the infrared emission bands of carbon-rich planetary nebulae.
We study the relation between the chemical composition and the type of dust present in a group of 20 Galactic planetary nebulae (PNe) that have high quality optical and infrared spectra. The optical spectra are used, together with the best available
Void-defect is a possible origin of ferromagnetic feature on pure carbon materials. In our previous paper, void-defect on graphene-nanoribbon show highly polarized spin configuration. In this paper, we studied cases for graphene molecules by quantum
It had been understood that astronomically observed infrared spectrum of carbon rich planetary nebula as like Tc 1 and Lin 49 comes from fullerene (C60). Also, it is well known that graphene is a raw material for synthesizing fullerene. This study se
Astronomical dust molecule of carbon-rich nebula-Lin49 and nebula-Tc1 could be identified to be polycyclic-pure-carbon C23 by the quantum-chemical calculation. Two driving forces were assumed. One is high speed proton attack on coronene-C24H12, which
Present paper is a review of results, obtained in the framework of semiclassical approach in nanophysics. Semiclassical description, based on Electrostatics and Thomas-Fermi model was applied to calculate dimensions of the electronic shell of a fulle