ﻻ يوجد ملخص باللغة العربية
We introduce a quantification of genuine three-party pure-state coherence for wave fields, classical and quantum, by borrowing concepts from classical optics. The tensor structure of a classical paraxial light beam composed of three principle degrees of freedom is shown to be equivalent to that of a three-qubit quantum state. The traditional basis-independent optical coherence quantity called degree of polarization is then determined to be the desired quantitative two-party coherence measure. When appropriately generalized, a set of fundamental constraint relations is derived among three two-party coherences. The constraint relations can be geometrically interpreted and visualized as tetrahedra nested within a coherence cube. A measure of three-party coherence is defined based on the constraints. We are reporting completed experimental tests and confirmations of the constraints as well as measurement of three-party coherence in the optical context. Our approach based on classical optics also opens an alternative way to analyze quantum coherence.
Multiparticle quantum interference is critical for our understanding and exploitation of quantum information, and for fundamental tests of quantum mechanics. A remarkable example of multi-partite correlations is exhibited by the Greenberger-Horne-Zei
Photon indistinguishability plays a fundamental role in information processing, with applications such as linear-optical quantum computation and metrology. It is then necessary to develop appropriate tools to quantify the amount of this resource in a
We experimentally prepare a new type of continuous variable genuine four-partite entangled states, the quantum correlation property of which is different from that of the four-mode GHZ and cluster states, and which has not any qubit counterpart to be
Quantum coherence is a fundamental property of quantum systems, separating quantum from classical physics. Recently, there has been significant interest in the characterization of quantum coherence as a resource, investigating how coherence can be ex
We propose a high-efficiency three-party quantum key agreement protocol, by utilizing two-photon polarization-entangled Bell states and a few single-photon polarization states as the information carriers, and we use the quantum dense coding method to