ﻻ يوجد ملخص باللغة العربية
We compare the extent of the dust, molecular gas and stars in three star-forming galaxies, at $z= 1.4, 1.6$ and $2.7$, selected from the Hubble Ultra Deep Field based on their bright CO and dust-continuum emission as well as their large rest-frame optical sizes. The galaxies have high stellar masses, $mathrm{M}_*>10^{11}mathrm{M}_odot$, and reside on, or slightly below, the main sequence of star-forming galaxies at their respective redshifts. We probe the dust and molecular gas using subarcsecond Atacama Large Millimeter/submillimeter Array observations of the 1.3 mm continuum and CO line emission, respectively, and probe the stellar distribution using emph{Hubble Space Telescope} observations at 1.6 textmu m. We find that for all three galaxies the CO emission appears $gtrsim 30%$ more compact than the stellar emission. For the $z= 1.4$ and $2.7$ galaxies, the dust emission is also more compact, by $gtrsim 50%$, than the stellar emission, whereas for the $z=1.6$ galaxy, the dust and stellar emission have similar spatial extents. This similar spatial extent is consistent with observations of local disk galaxies. However, most high redshift observations show more compact dust emission, likely due to the ubiquity of central starbursts at high redshift and the limited sensitivity of many of these observations. Using the CO emission line, we also investigate the kinematics of the cold interstellar medium in the galaxies, and find that all three have kinematics consistent with a rotation-dominated disk.
While dust is a major player in galaxy evolution, its relationship with gas and stellar radiation in the early universe is still not well understood. We combine 3D-HST emission line fluxes with far-UV through far-IR photometry in a sample of 669 emis
We test the use of long-wavelength dust continuum emission as a molecular gas tracer at high redshift, via a unique sample of 12, z~2 galaxies with observations of both the dust continuum and CO(1-0) line emission (obtained with the Atacama Large Mil
(abridged) In this work we have a closer look at the gas content or fraction and the associated star formation rate in main sequence and starburst galaxies at z=0 and z~1-2 by applying an analytical model of galactic clumpy gas disks to samples of lo
We investigate the CO excitation and interstellar medium (ISM) conditions in a cold gas mass-selected sample of 22 star-forming galaxies at $z=0.46-3.60$, observed as part of the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field (ASPECS). Comb
The aim of this paper is to investigate spectral and photometric properties of 854 faint ($i_{AB}$<~25 mag) star-forming galaxies (SFGs) at 2<z<2.5 using the VIMOS Ultra-Deep Survey (VUDS) spectroscopic data and deep multi-wavelength photometric data