ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal flow equations and chaos bound saturation in 2d dilaton gravity

61   0   0.0 ( 0 )
 نشر من قبل Daniel Grumiller
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that several features of the Jackiw-Teitelboim model are in fact universal properties of two-dimensional Maxwell-dilaton gravity theories with a broad class of asymptotics. These theories satisfy a flow equation with the structure of a dimensionally reduced TTbar deformation, and exhibit chaotic behavior signaled by a maximal Lyapunov exponent. One consequence of our results is a no-go theorem for smooth flows from an asymptotically AdS2 region to a de Sitter fixed point.

قيم البحث

اقرأ أيضاً

We consider gravitational perturbations of 2D dilaton gravity systems and show that these can be recast into $Tbar{T}$-deformations (at least) under certain conditions, where $T$ means the energy-momentum tensor of the matter field coupled to a dilat on gravity. In particular, the class of theories under this condition includes a Jackiw-Teitelboim (JT) theory with a negative cosmological constant including conformal matter fields. This is a generalization of the preceding work on the flat-space JT gravity by S. Dubovsky, V. Gorbenko and M. Mirbabayi [arXiv:1706.06604].
In this work, kinks with non-canonical kinetic energy terms are studied in a type of two-dimensional dilaton gravity model. The linear stability issue is generally discussed for arbitrary static solutions with the aid of supersymmetric quantum mechan ics theory, and the stability criteria are obtained. As an explicit example, a model with cuscuton term is studied. After rewriting the equations of motion into simpler first-order formalism and choosing a polynomial superpotential, an exact self-gravitating kink solution is obtained. The impacts of the cuscuton term are discussed.
In the investigation and resolution of the cosmological constant problem the inclusion of the dynamics of quantum gravity can be a crucial step. In this work we suggest that the quantum constraints in a canonical theory of gravity can provide a way o f addressing the issue: we consider the case of two-dimensional quantum dilaton gravity non-minimally coupled to a U(1) gauge field, in the presence of an arbitrary number of massless scalar matter fields, intended also as an effective description of highly symmetrical higher-dimensional models. We are able to quantize the system non-perturbatively and obtain an expression for the cosmological constant Lambda in terms of the quantum physical states, in a generalization of the usual QFT approach. We discuss the role of the classical and quantum gravitational contributions to Lambda and present a partial spectrum of values for it.
We compute the circuit complexity of scalar curvature perturbations on FLRW cosmological backgrounds with fixed equation of state $w$ using the language of squeezed vacuum states. Backgrounds that are accelerating and expanding, or decelerating and c ontracting, exhibit features consistent with chaotic behavior, including linearly growing complexity. Remarkably, we uncover a bound on the growth of complexity for both expanding and contracting backgrounds $lambda leq sqrt{2} |H|$, similar to other bounds proposed independently in the literature. The bound is saturated for expanding backgrounds with an equation of state more negative than $w = -5/3$, and for contracting backgrounds with an equation of state larger than $w = 1$. For expanding backgrounds that preserve the null energy condition, de Sitter space has the largest rate of growth of complexity (identified as the Lyapunov exponent), and we find a scrambling time that is similar to other estimates up to order one factors.
We study the information quantities, including the holographic entanglement entropy (HEE), mutual information (MI) and entanglement of purification (EoP), over Gubser-Rocha model. The remarkable property of this model is the zero entropy density at g round state, in term of which we expect to extract novel, even singular informational properties in zero temperature limit. Surprisedly, we do not observe any singular behavior of entanglement-related physical quantities under the zero temperature limit. Nevertheless, we find a peculiar property from Gubser-Rocha model that in low temperature region, the HEE decreases with the increase of temperature, which is contrary to that in most holographic models. We argue that this novel phenomenon is brought by the singular property of the zero temperature limit, of which the analytical verification is present. In addition, we also compare the features of the information quantities in Gubser-Rocha model with those in Reissner-Nordstrom Anti-de Sitter (RN-AdS) black hole model. It is shown that the HEE and MI of Gubser-Rocha model are always larger than those of RN-AdS model, while the EoP behaves in an opposite way. Our results indicate that MI and EoP could have different abilities in describing mixed state entanglement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا