ﻻ يوجد ملخص باللغة العربية
We have investigated the in-plane anisotropy of the c-axis magnetoresistance (MR) in both superconducting and normal states of single crystals of NdO0.7F0.3BiS2 under in-plane magnetic fields. In the superconducting states of NdO0.7F0.3BiS2, four-fold-symmetric in-plane anisotropy of the c-axis MR was observed below the superconducting transition temperature. Since the crystal structure of NdO0.7F0.3BiS2 is tetragonal, the rotational symmetry in the superconducting state is preserved in the present compound. This result is clearly different from the previous report observed in LaO0.5F0.5BiSSe single crystals, where the in-plane MR in the superconducting state shows two-fold symmetry. On the other hand, in the normal states of NdO0.7F0.3BiS2, two-fold symmetric MR with a small amplitude was observed. The possible origin of the two-fold-symmetric behavior was discussed with the presence of local structural disorder in the conducting plane of BiCh2-based compounds.
We have investigated the in-plane anisotropy of the c-axis magnetoresistance for single crystals of a BiCh2-based superconductor LaO0.5F0.5BiSSe under in-plane magnetic fields. We observed two-fold symmetry in the c-axis magnetoresistance in the ab-p
We investigate the superconducting properties and possible nematic superconductivity of self-doped BiCh2-based (Ch: S, Se) superconductor CeOBiS1.7Se0.3 through the measurements of in-plane anisotropy of magnetoresistance. Single crystals of CeOBiS1.
BiCh2-based superconductors (Ch: S, Se) are a new series of layered superconductor. However, mechanisms for the emergence of superconductivity in BiCh2-based superconductors have not been clarified. In this study, we have investigated crystal structu
It is generally difficult to quantify the amounts of light elements in materials because of their low X-ray-scattering power, as this means that they cannot be easily estimated via X-ray analyses. Meanwhile, the recently reported layered superconduct
Transition-metal oxides offer an opportunity to explore unconventional superconductors, where the superconductivity (SC) is often interrelated with novel phenomena such as spin/charge order, fluctuations, and Fermi surface instability (1-3). LiTi2O4