ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigation of in-plane anisotropy of c-axis magnetoresistance for BiCh2-based layered superconductor NdO0.7F0.3BiS2

91   0   0.0 ( 0 )
 نشر من قبل Yoshikazu Mizuguchi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have investigated the in-plane anisotropy of the c-axis magnetoresistance (MR) in both superconducting and normal states of single crystals of NdO0.7F0.3BiS2 under in-plane magnetic fields. In the superconducting states of NdO0.7F0.3BiS2, four-fold-symmetric in-plane anisotropy of the c-axis MR was observed below the superconducting transition temperature. Since the crystal structure of NdO0.7F0.3BiS2 is tetragonal, the rotational symmetry in the superconducting state is preserved in the present compound. This result is clearly different from the previous report observed in LaO0.5F0.5BiSSe single crystals, where the in-plane MR in the superconducting state shows two-fold symmetry. On the other hand, in the normal states of NdO0.7F0.3BiS2, two-fold symmetric MR with a small amplitude was observed. The possible origin of the two-fold-symmetric behavior was discussed with the presence of local structural disorder in the conducting plane of BiCh2-based compounds.



قيم البحث

اقرأ أيضاً

We have investigated the in-plane anisotropy of the c-axis magnetoresistance for single crystals of a BiCh2-based superconductor LaO0.5F0.5BiSSe under in-plane magnetic fields. We observed two-fold symmetry in the c-axis magnetoresistance in the ab-p lane of LaO0.5F0.5BiSSe while the crystal possessed a tetragonal square plane with four-fold symmetry. The observed symmetry lowering in magnetoresistance from the structural symmetry may be related to the nematic states, which have been observed in the superconducting states of several unconventional superconductors.
We investigate the superconducting properties and possible nematic superconductivity of self-doped BiCh2-based (Ch: S, Se) superconductor CeOBiS1.7Se0.3 through the measurements of in-plane anisotropy of magnetoresistance. Single crystals of CeOBiS1. 7Se0.3 were grown using a flux method. Single-crystal structural analysis revealed that the crystal structure at room temperature is tetragonal (P4/nmm). Bulk superconductivity with a transition temperature of 3.3 K was observed through electrical resistivity and magnetization measurements. Investigation of anisotropy of upper critical field suggested relatively low anisotropy in the crystal as compared to other BiCh2-based superconductors. In the superconducting states of CeOBiS1.7Se0.3, two-fold symmetric in-plane anisotropy of magnetoresistance was observed, which indicates the in-plane rotational symmetry breaking in the tetragonal structure and hence the possibility of nematic superconductivity in CeOBiS1.7Se0.3.
BiCh2-based superconductors (Ch: S, Se) are a new series of layered superconductor. However, mechanisms for the emergence of superconductivity in BiCh2-based superconductors have not been clarified. In this study, we have investigated crystal structu re of two series of optimally-doped BiCh2-based superconductors, Ce1-xNdxO0.5F0.5BiS2 and LaO0.5F0.5Bi(S1-ySey)2, using powder synchrotron x-ray diffraction in order to reveal the relationship between crystal structure and superconducting properties of the BiCh2-based family. We have found that an enhancement of in-plane chemical pressure would commonly induce bulk superconductivity in both systems. Furthermore, we have revealed that superconducting transition temperature for REO0.5F0.5BiCh2 superconductors could universally be determined by degree of in-plane chemical pressure.
It is generally difficult to quantify the amounts of light elements in materials because of their low X-ray-scattering power, as this means that they cannot be easily estimated via X-ray analyses. Meanwhile, the recently reported layered superconduct or, Sc$_{20}$C$_{8-x}$B$_x$C$_{20}$, requires a small amount of boron, which is a light element, for its structural stability. In this context, here, we quantitatively evaluate the optimal $x$ value using both the experimental and computational approaches. Using the high-pressure synthesis approach that can maintain the starting composition even after sintering, we obtain the Sc$_{20}$(C,B)$_{8}$C$_{20}$ phase by the reaction of the previously reported Sc$_{15}$C$_{19}$ and B (Sc$_{15}$B$_y$C$_{19}$). Our experiments demonstrate that an increase in $y$ values promotes the phase formation of the Sc$_{20}$(C,B)$_{8}$C$_{20}$ structure; however, there appears to be an upper limit to the nominal $y$ value to form this phase. The maximum $T_mathrm{c}$ $(=7.6text{ K})$ is found to correspond with the actual $x$ value of $x sim 5$ under the assumption that the sample with the same $T_mathrm{c}$ as the reported value $(=7.7text{ K})$ possesses the optimal $x$ amount. Moreover, we construct the energy convex hull diagram by calculating the formation enthalpy based on first principles. Our computational results indicate that the composition of Sc$_{20}$C$_4$B$_4$C$_{20}$ $(x=4)$ is the most thermodynamically stable, which is reasonably consistent with the experimentally obtained value.
122 - Kui Jin , Ge He , Xiaohang Zhang 2014
Transition-metal oxides offer an opportunity to explore unconventional superconductors, where the superconductivity (SC) is often interrelated with novel phenomena such as spin/charge order, fluctuations, and Fermi surface instability (1-3). LiTi2O4 (LTO) is a unique compound in that it is the only known spinel oxide superconductor. In addition to electron-phonon coupling, electron-electron and spin fluctuation contributions have been suggested as playing important roles in the microscopic mechanism for its superconductivity (4-8). However, the lack of high quality single crystals has thus far prevented systematic investigation of their transport properties (9). Here, we report a careful study of transport and tunneling spectroscopy in epitaxial LTO thin films. In the superconducting state, the energy gap was found to decrease as a quadratic function of magnetic field. In the normal state, an unusual magnetoresistance (MR) was observed where it changes from anisotropic positive to isotropic negative as the temperature is increased. A constant charge carrier concentration without any abrupt change in lattice parameters as a function of temperature suggests that the isotropic MR stems from the suppression of spin scattering/fluctuations, while the anisotropic term originates from an orbital contribution. These observations point to an important role strong correlations play in this unique superconductor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا