ترغب بنشر مسار تعليمي؟ اضغط هنا

Semi-Supervised Crowd Counting via Self-Training on Surrogate Tasks

317   0   0.0 ( 0 )
 نشر من قبل Yinjie Lei
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Most existing crowd counting systems rely on the availability of the object location annotation which can be expensive to obtain. To reduce the annotation cost, one attractive solution is to leverage a large number of unlabeled images to build a crowd counting model in semi-supervised fashion. This paper tackles the semi-supervised crowd counting problem from the perspective of feature learning. Our key idea is to leverage the unlabeled images to train a generic feature extractor rather than the entire network of a crowd counter. The rationale of this design is that learning the feature extractor can be more reliable and robust towards the inevitable noisy supervision generated from the unlabeled data. Also, on top of a good feature extractor, it is possible to build a density map regressor with much fewer density map annotations. Specifically, we proposed a novel semi-supervised crowd counting method which is built upon two innovative components: (1) a set of inter-related binary segmentation tasks are derived from the original density map regression task as the surrogate prediction target; (2) the surrogate target predictors are learned from both labeled and unlabeled data by utilizing a proposed self-training scheme which fully exploits the underlying constraints of these binary segmentation tasks. Through experiments, we show that the proposed method is superior over the existing semisupervised crowd counting method and other representative baselines.

قيم البحث

اقرأ أيضاً

Semi-supervised approaches for crowd counting attract attention, as the fully supervised paradigm is expensive and laborious due to its request for a large number of images of dense crowd scenarios and their annotations. This paper proposes a spatial uncertainty-aware semi-supervised approach via regularized surrogate task (binary segmentation) for crowd counting problems. Different from existing semi-supervised learning-based crowd counting methods, to exploit the unlabeled data, our proposed spatial uncertainty-aware teacher-student framework focuses on high confident regions information while addressing the noisy supervision from the unlabeled data in an end-to-end manner. Specifically, we estimate the spatial uncertainty maps from the teacher models surrogate task to guide the feature learning of the main task (density regression) and the surrogate task of the student model at the same time. Besides, we introduce a simple yet effective differential transformation layer to enforce the inherent spatial consistency regularization between the main task and the surrogate task in the student model, which helps the surrogate task to yield more reliable predictions and generates high-quality uncertainty maps. Thus, our model can also address the task-level perturbation problems that occur spatial inconsistency between the primary and surrogate tasks in the student model. Experimental results on four challenging crowd counting datasets demonstrate that our method achieves superior performance to the state-of-the-art semi-supervised methods.
Labeling is onerous for crowd counting as it should annotate each individual in crowd images. Recently, several methods have been proposed for semi-supervised crowd counting to reduce the labeling efforts. Given a limited labeling budget, they typica lly select a few crowd images and densely label all individuals in each of them. Despite the promising results, we argue the None-or-All labeling strategy is suboptimal as the densely labeled individuals in each crowd image usually appear similar while the massive unlabeled crowd images may contain entirely diverse individuals. To this end, we propose to break the labeling chain of previous methods and make the first attempt to reduce spatial labeling redundancy for semi-supervised crowd counting. First, instead of annotating all the regions in each crowd image, we propose to annotate the representative ones only. We analyze the region representativeness from both vertical and horizontal directions, and formulate them as cluster centers of Gaussian Mixture Models. Additionally, to leverage the rich unlabeled regions, we exploit the similarities among individuals in each crowd image to directly supervise the unlabeled regions via feature propagation instead of the error-prone label propagation employed in the previous methods. In this way, we can transfer the original spatial labeling redundancy caused by individual similarities to effective supervision signals on the unlabeled regions. Extensive experiments on the widely-used benchmarks demonstrate that our method can outperform previous best approaches by a large margin.
Well-annotated medical images are costly and sometimes even impossible to acquire, hindering landmark detection accuracy to some extent. Semi-supervised learning alleviates the reliance on large-scale annotated data by exploiting the unlabeled data t o understand the population structure of anatomical landmarks. The global shape constraint is the inherent property of anatomical landmarks that provides valuable guidance for more consistent pseudo labelling of the unlabeled data, which is ignored in the previously semi-supervised methods. In this paper, we propose a model-agnostic shape-regulated self-training framework for semi-supervised landmark detection by fully considering the global shape constraint. Specifically, to ensure pseudo labels are reliable and consistent, a PCA-based shape model adjusts pseudo labels and eliminate abnormal ones. A novel Region Attention loss to make the network automatically focus on the structure consistent regions around pseudo labels. Extensive experiments show that our approach outperforms other semi-supervised methods and achieves notable improvement on three medical image datasets. Moreover, our framework is flexible and can be used as a plug-and-play module integrated into most supervised methods to improve performance further.
Labeled crowd scene images are expensive and scarce. To significantly reduce the requirement of the labeled images, we propose ColorCount, a novel CNN-based approach by combining self-supervised transfer colorization learning and global prior classif ication to leverage the abundantly available unlabeled data. The self-supervised colorization branch learns the semantics and surface texture of the image by using its color components as pseudo labels. The classification branch extracts global group priors by learning correlations among image clusters. Their fused resultant discriminative features (global priors, semantics and textures) provide ample priors for counting, hence significantly reducing the requirement of labeled images. We conduct extensive experiments on four challenging benchmarks. ColorCount achieves much better performance as compared with other unsupervised approaches. Its performance is close to the supervised baseline with substantially less labeled data (10% of the original one).
To alleviate human efforts from obtaining large-scale annotations, Semi-Supervised Relation Extraction methods aim to leverage unlabeled data in addition to learning from limited samples. Existing self-training methods suffer from the gradual drift p roblem, where noisy pseudo labels on unlabeled data are incorporated during training. To alleviate the noise in pseudo labels, we propose a method called MetaSRE, where a Relation Label Generation Network generates quality assessment on pseudo labels by (meta) learning from the successful and failed attempts on Relation Classification Network as an additional meta-objective. To reduce the influence of noisy pseudo labels, MetaSRE adopts a pseudo label selection and exploitation scheme which assesses pseudo label quality on unlabeled samples and only exploits high-quality pseudo labels in a self-training fashion to incrementally augment labeled samples for both robustness and accuracy. Experimental results on two public datasets demonstrate the effectiveness of the proposed approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا