ﻻ يوجد ملخص باللغة العربية
We introduce a global thermostat on Kacs 1D model for the velocities of particles in a space-homogeneous gas subjected to binary collisions, also interacting with a (local) Maxwellian thermostat. The global thermostat rescales the velocities of all the particles, thus restoring the total energy of the system, which leads to an additional drift term in the corresponding nonlinear kinetic equation. We prove ergodicity for this equation, and show that its equilibrium distribution has a density that, depending on the parameters of the model, can exhibit heavy tails, and whose behaviour at the origin can range from being analytic, to being $C^k$, and even to blowing-up. Finally, we prove propagation of chaos for the associated $N$-particle system, with a uniform-in-time rate of order $N^{-eta}$ in the squared $2$-Wasserstein metric, for an explicit $eta in (0, 1/3]$.
We study a system of $N$ particles interacting through the Kac collision, with $m$ of them interacting, in addition, with a Maxwellian thermostat at temperature $frac{1}{beta}$. We use two indicators to understand the approach to the equilibrium Gaus
We study a model of random colliding particles interacting with an infinite reservoir at fixed temperature and chemical potential. Interaction between the particles is modeled via a Kac master equation cite{kac}. Moreover, particles can leave the sys
We use the Fourier based Gabetta-Toscani-Wennberg (GTW) metric $d_2$ to study the rate of convergence to equilibrium for the Kac model in $1$ dimension. We take the initial velocity distribution of the particles to be a Borel probability measure $mu$
We consider Kacs 1D N-particle system coupled to an ideal thermostat at temperature T, introduced by Bonetto, Loss, and Vaidyanathan in 2014. We obtain a propagation of chaos result for this system, with explicit and uniform-in-time rates of order N^
We consider solutions to the Kac master equation for initial conditions where $N$ particles are in a thermal equilibrium and $Mle N$ particles are out of equilibrium. We show that such solutions have exponential decay in entropy relative to the therm