ﻻ يوجد ملخص باللغة العربية
The ResNet-based architecture has been widely adopted to extract speaker embeddings for text-independent speaker verification systems. By introducing the residual connections to the CNN and standardizing the residual blocks, the ResNet structure is capable of training deep networks to achieve highly competitive recognition performance. However, when the input feature space becomes more complicated, simply increasing the depth and width of the ResNet network may not fully realize its performance potential. In this paper, we present two extensions of the ResNet architecture, ResNeXt and Res2Net, for speaker verification. Originally proposed for image recognition, the ResNeXt and Res2Net introduce two more dimensions, cardinality and scale, in addition to depth and width, to improve the models representation capacity. By increasing the scale dimension, the Res2Net model can represent multi-scale features with various granularities, which particularly facilitates speaker verification for short utterances. We evaluate our proposed systems on three speaker verification tasks. Experiments on the VoxCeleb test set demonstrated that the ResNeXt and Res2Net can significantly outperform the conventional ResNet model. The Res2Net model achieved superior performance by reducing the EER by 18.5% relative. Experiments on the other two internal test sets of mismatched conditions further confirmed the generalization of the ResNeXt and Res2Net architectures against noisy environment and segment length variations.
The goal of this paper is text-independent speaker verification where utterances come from in the wild videos and may contain irrelevant signal. While speaker verification is naturally a pair-wise problem, existing methods to produce the speaker embe
In this paper, we propose VoiceID loss, a novel loss function for training a speech enhancement model to improve the robustness of speaker verification. In contrast to the commonly used loss functions for speech enhancement such as the L2 loss, the V
Meta-learning (ML) has recently become a research hotspot in speaker verification (SV). We introduce two methods to improve the meta-learning training for SV in this paper. For the first method, a backbone embedding network is first jointly trained w
In this work, we introduce metric learning (ML) to enhance the deep embedding learning for text-independent speaker verification (SV). Specifically, the deep speaker embedding network is trained with conventional cross entropy loss and auxiliary pair
The INTERSPEECH 2020 Far-Field Speaker Verification Challenge (FFSVC 2020) addresses three different research problems under well-defined conditions: far-field text-dependent speaker verification from single microphone array, far-field text-independe