ترغب بنشر مسار تعليمي؟ اضغط هنا

Kondo physics in antiferromagnetic Weyl semimetal Mn3+xSn1-x films

66   0   0.0 ( 0 )
 نشر من قبل Sunxiang Huang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Topology and strong electron correlations are crucial ingredients in emerging quantum materials, yet their intersection in experimental systems has been relatively limited to date. Strongly correlated Weyl semimetals, particularly when magnetism is incorporated, offer a unique and fertile platform to explore emergent phenomena in novel topological matter and topological spintronics. The antiferromagnetic Weyl semimetal Mn3Sn exhibits many exotic physical properties such as a large spontaneous Hall effect and has recently attracted intense interest. In this work, we report synthesis of epitaxial Mn3+xSn1-x films with greatly extended compositional range in comparison with that of bulk samples. As Sn atoms are replaced by magnetic Mn atoms, the Kondo effect, which is a celebrated example of strong correlations, emerges, develops coherence, and induces a hybridization energy gap. The magnetic doping and gap opening lead to rich extraordinary properties as exemplified by the prominent DC Hall effects and resonance-enhanced terahertz Faraday rotation.

قيم البحث

اقرأ أيضاً

TaAs as one of the experimentally discovered topological Weyl semimetal has attracted intense interests recently. The ambient TaAs has two types of Weyl nodes which are not on the same energy level. As an effective way to tune lattice parameters and electronic interactions, high pressure is becoming a significant tool to explore new materials as well as their exotic states. Therefore, it is highly interesting to investigate the behaviors of topological Weyl fermions and possible structural phase transitions in TaAs under pressure. Here, with a combination of ab initio calculations and crystal structure prediction techniques, a new hexagonal P-6m2 phase is predicted in TaAs at pressure around 14 GPa. Surprisingly, this new phase is a topological semimetal with only single set of Weyl nodes exactly on the same energy level. The phase transition pressure from the experimental measurements, including electrical transport measurements and Raman spectroscopy, agrees with our theoretical prediction reasonably. Moreover, the P-6m2 phase seems to be quenched recoverable to ambient pressure, which increases the possibilities of further study on the exotic behaviors of single set of Weyl fermions, such as the interplay between surface states and other properties.
A magnetic Weyl semimetal is a recent focus of extensive research as it may exhibit large and robust transport phenomena associated with topologically protected Weyl points in momentum space. Since a magnetic texture provides a handle for the configu ration of the Weyl points and its transport response, understanding of magnetic dynamics should form a basis of future control of a topological magnet. Mn3Sn is an example of an antiferromagnetic Weyl semimetal that exhibits a large response comparable to the one observed in ferromagnets despite a vanishingly small magnetization. The non-collinear spin order in Mn3Sn can be viewed as a ferroic order of cluster magnetic octupole and breaks the time-reversal symmetry, stabilizing Weyl points and the significantly enhanced Berry curvature near the Fermi energy. Here we report our first observation of time-resolved octupole oscillation in Mn3Sn. In particular, we find the giant effective damping of the octupole dynamics, and it is feasible to conduct an ultrafast switching at < 10 ps, a hundred times faster than the case of spin-magnetization in a ferromagnet. Moreover, high domain wall velocity over 10 km/s is theoretically predicted. Our work paves the path towards realizing ultrafast electronic devices using the topological antiferromagnet.
241 - Peizhe Tang , Quan Zhou , Gang Xu 2016
The analogues of elementary particles have been extensively searched for in condensed matter systems because of both scientific interests and technological applications. Recently massless Dirac fermions were found to emerge as low energy excitations in the materials named Dirac semimetals. All the currently known Dirac semimetals are nonmagnetic with both time-reversal symmetry $mathcal{T}$ and inversion symmetry $mathcal{P}$. Here we show that Dirac fermions can exist in one type of antiferromagnetic systems, where $mathcal{T}$ and $mathcal{P}$ are broken but their combination $mathcal{PT}$ is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyze the robustness of the Dirac points with symmetry protections, and demonstrate its distinctive bulk dispersions as well as the corresponding surface states by emph{ab initio} calculations. Our results give a new route towards the realization of Dirac materials, and provide a possible platform to study the interplay of Dirac fermion physics and magnetism.
121 - V. Nagpal , K. S. Jat , S. Patnaik 2021
Topological materials with extremely large magnetoresistance exhibit a prognostic feature of resistivity turn-on behaviour. This occurs when the temperature dependence of resistivity changes from metallic to semiconducting characteristics on applicat ion of external magnetic field above a threshold value. Here, we study the magneto-transport properties of type-II Weyl Semimetal WP2. We find that semi-classical theories of magnetoresistance are consistent with our data without the need to invoke topological surface states. Our findings in this work provides an alternative basis to understand the temperature dependence of magnetoresistance in topological materials.
We report a novel soft x-ray nanodiffraction study of antiferromagnetic domains in the strongly correlated bylayer manganite La$_{0.96}$Sr$_{2.04}$Mn$_{2}$O$_{7}$. We find that the antiferromagnetic domains are quenched, forming a unique domain patte rn with each domain having an intrinsic memory of its spin direction, and with associated domain walls running along crystallographic directions. This can be explained by the presence of crystallographic or magnetic imperfections locked in during the crystal growth process which pin the antiferromagnetic domains. The antiferromagnetic domain pattern shows two distinct types of domain. We observe, in one type only, a periodic ripple in the manganese spin direction with a period of approximately 4 micrometer. We propose that the loss of inversion symmetry within a bilayer is responsible for this ripple structure through a Dzyaloshinskii-Moriya-type interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا