ﻻ يوجد ملخص باللغة العربية
Modern genomic studies are increasingly focused on discovering more and more interesting genes associated with a health response. Traditional shrinkage priors are primarily designed to detect a handful of signals from tens and thousands of predictors. Under diverse sparsity regimes, the nature of signal detection is associated with a tail behaviour of a prior. A desirable tail behaviour is called tail-adaptive shrinkage property where tail-heaviness of a prior gets adaptively larger (or smaller) as a sparsity level increases (or decreases) to accommodate more (or less) signals. We propose a global-local-tail (GLT) Gaussian mixture distribution to ensure this property and provide accurate inference under diverse sparsity regimes. Incorporating a peaks-over-threshold method in extreme value theory, we develop an automated tail learning algorithm for the GLT prior. We compare the performance of the GLT prior to the Horseshoe in two gene expression datasets and numerical examples. Results suggest that varying tail rule is advantageous over fixed tail rule under diverse sparsity domains.
In record linkage (RL), or exact file matching, the goal is to identify the links between entities with information on two or more files. RL is an important activity in areas including counting the population, enhancing survey frames and data, and co
Shrinkage prior are becoming more and more popular in Bayesian modeling for high dimensional sparse problems due to its computational efficiency. Recent works show that a polynomially decaying prior leads to satisfactory posterior asymptotics under r
We consider the problem of variable selection in high-dimensional settings with missing observations among the covariates. To address this relatively understudied problem, we propose a new synergistic procedure -- adaptive Bayesian SLOPE -- which eff
We develop singular value shrinkage priors for the mean matrix parameters in the matrix-variate normal model with known covariance matrices. Our priors are superharmonic and put more weight on matrices with smaller singular values. They are a natural
Radio tomographic imaging (RTI) is an emerging technology to locate physical objects in a geographical area covered by wireless networks. From the attenuation measurements collected at spatially distributed sensors, radio tomography capitalizes on sp