ترغب بنشر مسار تعليمي؟ اضغط هنا

Blockchain-Based Trusted Achievement Record System Design

64   0   0.0 ( 0 )
 نشر من قبل Ellis Solaiman
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The primary purpose of this paper is to provide a design of a blockchain-based system, which produces a verifiable record of achievements. Such a system has a wide range of potential benefits for students, employers and higher education institutions. A verifiable record of achievements enables students to present academic accomplishments to employers, within a trusted framework. Furthermore, the availability of such a record system would enable students to review their learning throughout their career, giving them a platform on which to plan for their future accomplishments, both individually and with support from other parties (for example, academic advisors, supervisors, or potential employers). The proposed system will help students in universities to increase their extra-curricular activities and improve non-academic skills. Moreover, the system will facilitate communication between industry, students, and universities for employment purposes and simplify the search for the most appropriate potential employees for the job.



قيم البحث

اقرأ أيضاً

A trusted achievement record is a secure system that aims to record and authenticate certificates as well as key learning activities and achievements. This paper intends to gather important information on the thoughts and outlooks of stakeholders on an achievement record system that uses blockchain and smart contract technology. The system would allow stakeholders (for example employers) to validate learning records. Two main aims are investigated. The first is to evaluate the suitability of the idea of building a trusted achievement record for learners in higher education, and to evaluate potential user knowledge of blockchain technology. This is to ensure that a designed system is usable. The second aim includes an interview conducted with a small group of participants to gather information about the challenges individuals have when creating, and reviewing CVs. Overall, 90% of participants agreed that there was a strong need for a trusted achievement record. In addition, 93.64% of respondents stated that they felt it was invaluable to have a system that is usable by all stakeholders. When tackling the second aim it was found that a primary challenge is lack of knowledge of blockchain and its complexity. From the employers perspective, there is a lack of trust due to inaccuracies when students describe skills and qualifications in their resumes.
Activity tracking apps often make use of goals as one of their core motivational tools. There are two critical components to this tool: setting a goal, and subsequently achieving that goal. Despite its crucial role in how a number of prominent self-t racking apps function, there has been relatively little investigation of the goal-setting and achievement aspects of self-tracking apps. Here we explore this issue, investigating a particular goal setting and achievement process that is extensive, recorded, and crucial for both the app and its users success: weight loss goals in MyFitnessPal. We present a large-scale study of 1.4 million users and weight loss goals, allowing for an unprecedented detailed view of how people set and achieve their goals. We find that, even for difficult long-term goals, behavior within the first 7 days predicts those who ultimately achieve their goals, that is, those who lose at least as much weight as they set out to, and those who do not. For instance, high amounts of early weight loss, which some researchers have classified as unsustainable, leads to higher goal achievement rates. We also show that early food intake, self-monitoring motivation, and attitude towards the goal are important factors. We then show that we can use our findings to predict goal achievement with an accuracy of 79% ROC AUC just 7 days after a goal is set. Finally, we discuss how our findings could inform steps to improve goal achievement in self-tracking apps.
In the field of tutoring systems, investigations have shown that there are many tutoring systems specific to a specific domain that, because of their static architecture, cannot be adapted to other domains. As consequence, often neither methods nor k nowledge can be reused. In addition, the knowledge engineer must have programming skills in order to enhance and evaluate the system. One particular challenge is to tackle these problems with the development of a generic tutoring system. AnITA, as a stand-alone application, has been developed and implemented particularly for this purpose. However, in the testing phase, we discovered that this architecture did not fully match the users intuitive understanding of the use of a learning tool. Therefore, AnITA has been redesigned to exclusively work as a client/server application and renamed to AnITA2. This paper discusses the evolvements made on the AnITA tutoring system, the goal of which is to use generic principles for system re-use in any domain. Two experiments were conducted, and the results are presented in this paper.
An Intelligent Tutoring System (ITS) has been shown to improve students learning outcomes by providing a personalized curriculum that addresses individual needs of every student. However, despite the effectiveness and efficiency that ITS brings to st udents learning process, most of the studies in ITS research have conducted less effort to design the interface of ITS that promotes students interest in learning, motivation and engagement by making better use of AI features. In this paper, we explore AI-driven design for the interface of ITS describing diagnostic feedback for students problem-solving process and investigate its impacts on their engagement. We propose several interface designs powered by different AI components and empirically evaluate their impacts on student engagement through Santa, an active mobile ITS. Controlled A/B tests conducted on more than 20K students in the wild show that AI-driven interface design improves the factors of engagement by up to 25.13%.
Urban areas are negatively impacted by Carbon Dioxide (CO2 ) and Nitrogen Oxide (NOx) emissions. In order to achieve a cost-effective reduction of greenhouse gas emissions and to combat climate change, the European Union (EU) introduced an Emissions Trading System (ETS) where organizations can buy or receive emission allowances as needed. The current ETS is a centralized one, consisting of a set of complex rules. It is currently administered at the organizational level and is used for fixed-point sources of pollution such as factories, power plants, and refineries. However, the current ETS cannot efficiently cope with vehicle mobility, even though vehicles are one of the primary sources of CO2 and NOx emissions. In this study, we propose a new distributed Blockchain-based emissions allowance trading system called B-ETS. This system enables transparent and trustworthy data exchange as well as trading of allowances among vehicles, relying on vehicle-to-vehicle communication. In addition, we introduce an economic incentive-based mechanism that appeals to individual drivers and leads them to modify their driving behavior in order to reduce emissions. The efficiency of the proposed system is studied through extensive simulations, showing how increased vehicle connectivity can lead to a reduction of the emissions generated from those vehicles. We demonstrate that our method can be used for full life-cycle monitoring and fuel economy reporting. This leads us to conjecture that the proposed system could lead to important behavioral changes among the drivers
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا