ﻻ يوجد ملخص باللغة العربية
Symmetric informationally complete measurements (SICs) are elegant, celebrated and broadly useful discrete structures in Hilbert space. We introduce a more sophisticated discrete structure compounded by several SICs. A SIC-compound is defined to be a collection of $d^3$ vectors in $d$-dimensional Hilbert space that can be partitioned in two different ways: into $d$ SICs and into $d^2$ orthonormal bases. While a priori their existence may appear unlikely when $d>2$, we surprisingly answer it in the positive through an explicit construction for $d=4$. Remarkably this SIC-compound admits a close relation to mutually unbiased bases, as is revealed through quantum state discrimination. Going beyond fundamental considerations, we leverage these exotic properties to construct a protocol for quantum key distribution and analyze its security under general eavesdropping attacks. We show that SIC-compounds enable secure key generation in the presence of errors that are large enough to prevent the success of the generalisation of the six-state protocol.
Mutually unbiased bases (MUBs) and symmetric informationally complete projectors (SICs) are crucial to many conceptual and practical aspects of quantum theory. Here, we develop their role in quantum nonlocality by: i) introducing families of Bell ine
In the present work, we suggest an approach for describing dynamics of finite-dimensional quantum systems in terms of pseudostochastic maps acting on probability distributions, which are obtained via minimal informationally complete quantum measureme
We propose entanglement criteria for multipartite systems via symmetric informationally complete (SIC) measurement and general symmetric informationally complete (GSIC) measurement. We apply these criteria to detect entanglement of multipartite state
Minimal informationally complete positive operator-valued measures (MIC-POVMs) are special kinds of measurement in quantum theory in which the statistics of their $d^2$-outcomes are enough to reconstruct any $d$-dimensional quantum state. For this re
This chapter describes the application of lasers, specifically diode lasers, in the area of quantum key distribution (QKD). First, we motivate the distribution of cryptographic keys based on quantum physical properties of light, give a brief introduc