ﻻ يوجد ملخص باللغة العربية
We extend the classical SIR model of infectious disease spread to account for time dependence in the parameters, which also include diffusivities. The temporal dependence accounts for the changing characteristics of testing, quarantine and treatment protocols, while diffusivity incorporates a mobile population. This model has been applied to data on the evolution of the COVID-19 pandemic in the US state of Michigan. For system inference, we use recent advances; specifically our framework for Variational System Identification (Wang et al., Comp. Meth. App. Mech. Eng., 356, 44-74, 2019; arXiv:2001.04816 [cs.CE]) as well as Bayesian machine learning methods.
We present an approach to studying and predicting the spatio-temporal progression of infectious diseases. We treat the problem by adopting a partial differential equation (PDE) version of the Susceptible, Infected, Recovered, Deceased (SIRD) compartm
A reasonable prediction of infectious diseases transmission process under different disease control strategies is an important reference point for policy makers. Here we established a dynamic transmission model via Python and realized comprehensive r
The world evolution of the Severe acute respiratory syndrome coronavirus 2 (SARS-Cov2 or simply COVID-19) led the World Health Organization to declare it a pandemic. The disease appeared in China in December 2019, and it has spread fast around the wo
In this paper, we apply statistical methods for functional data to explain the heterogeneity in the evolution of number of deaths of Covid-19 over different regions. We treat the cumulative daily number of deaths in a specific region as a curve (func
In this research, we study the propagation patterns of epidemic diseases such as the COVID-19 coronavirus, from a mathematical modeling perspective. The study is based on an extensions of the well-known susceptible-infected-recovered (SIR) family of