ﻻ يوجد ملخص باللغة العربية
Previous studies indicate that the properties of graphene oxide (GO) can be significantly improved by enhancing its graphitic domain size through thermal diffusion and clustering of functional groups. Remarkably, this transition takes place below the decomposition temperature of the functional groups and thus allows fine-tuning of graphitic domains without compromising with the functionality of GO. By studying the transformation of GO under mild thermal treatment, we directly observe this size enhancement of graphitic domains from originally 40 nm2 to 200 nm2 through an extensive transmission electron microscopy (TEM) study. Additionally, we confirm the integrity of the functional groups during this process by comprehensive chemical analysis. A closer look into the process confirms the theoretically predicted relevance for the room temperature stability of GO. We further investigate the influence of enlarged graphitic domains on the hydration behaviour of GO and catalytic performance of single-atom catalysts supported by GO.
The effect of silicone on the catalytic activity of Pt for oxygen reduction and hydrogen adsorption was studied using di-phenyl siloxane as a source compound at a rotating disc electrode (RDE). Di-phenyl siloxane did not affect the catalytic activity
Understanding the role of elastic strain in modifying catalytic reaction rates is crucial for catalyst design, but experimentally, this effect is often coupled with a ligand effect. To isolate the strain effect, we have investigated the influence of
Increasing energy demands of modern society requires deep understanding of the properties of energy storage materials as well as their performance tuning. We show that the capacitance of graphene oxide (GO) can be precisely tuned using a simple elect
Incorporation of magnetism in graphene based compounds holds great promise for potential spintronic applications. By optimizing point defects and high edge density of defects, we report many-fold increase in the ferromagnetic saturation moment in lac
The static and time-dependent behaviours of adhesively bonded polyethylene Double-Strap (DS) joints were investigated to assess the viability of this joint configuration relative to the Single-Lap (SL) joints. Both experiments and finite element simu