ﻻ يوجد ملخص باللغة العربية
Decomposing matrix A into a lower matrix L and an upper matrix U, which is also known as LU decomposition, is an essential operation in numerical linear algebra. For a sparse matrix, LU decomposition often introduces more nonzero entries in the L and U factors than in the original matrix. A symbolic factorization step is needed to identify the nonzero structures of L and U matrices. Attracted by the enormous potentials of the Graphics Processing Units (GPUs), an array of efforts have surged to deploy various LU factorization steps except for the symbolic factorization, to the best of our knowledge, on GPUs. This paper introduces gSoFa, the first GPU-based Symbolic factorization design with the following three optimizations to enable scalable LU symbolic factorization for nonsymmetric pattern sparse matrices on GPUs. First, we introduce a novel fine-grained parallel symbolic factorization algorithm that is well suited for the Single Instruction Multiple Thread (SIMT) architecture of GPUs. Second, we tailor supernode detection into a SIMT friendly process and strive to balance the workload, minimize the communication and saturate the GPU computing resources during supernode detection. Third, we introduce a three-pronged optimization to reduce the excessive space consumption problem faced by multi-source concurrent symbolic factorization. Taken together, gSoFa achieves up to 31x speedup from 1 to 44 Summit nodes (6 to 264 GPUs) and outperforms the state-of-the-art CPU project, on average, by 5x. Notably, gSoFa also achieves {up to 47%} of the peak memory throughput of a V100 GPU in Summit.
LDA is a statistical approach for topic modeling with a wide range of applications. However, there exist very few attempts to accelerate LDA on GPUs which come with exceptional computing and memory throughput capabilities. To this end, we introduce E
Rapid growth in scientific data and a widening gap between computational speed and I/O bandwidth makes it increasingly infeasible to store and share all data produced by scientific simulations. Instead, we need methods for reducing data volumes: idea
Dense linear algebra kernels, such as linear solvers or tensor contractions, are fundamental components of many scientific computing applications. In this work, we present a novel method of deriving parallel I/O lower bounds for this broad family of
Existing tensor factorization methods assume that the input tensor follows some specific distribution (i.e. Poisson, Bernoulli, and Gaussian), and solve the factorization by minimizing some empirical loss functions defined based on the corresponding
Priority queue, often implemented as a heap, is an abstract data type that has been used in many well-known applications like Dijkstras shortest path algorithm, Prims minimum spanning tree, Huffman encoding, and the branch-and-bound algorithm. Howeve