ﻻ يوجد ملخص باللغة العربية
Magmatic segregation and volcanic eruptions transport tidal heat from Ios interior to its surface. Several observed eruptions appear to be extremely high temperature ($geq$ 1600 K), suggesting either very high degrees of melting, refractory source regions, or large amounts of viscous heating on ascent. To address this ambiguity, we develop a model that couples crust and mantle dynamics to a simple compositional system. We analyse the model to investigate chemical structure and evolution. We demonstrate that magmatic segregation and volcanic eruptions lead to differentiation of the mantle, the extent of which depends on how easily high temperature melts from the more refractory lower mantle can migrate upwards. We propose that Ios highest temperature eruptions originate from this lower mantle region, and that such eruptions act to limit the degree of compositional differentiation.
In Efroimsky & Makarov (2014), we derived from the first principles a formula for the tidal heating rate in a tidally perturbed homogeneous sphere. We compared it with the formulae used in the literature, and pointed out the differences. Using this r
The advanced rheological models of Andrade (1910) and Sundberg & Cooper (2010) are compared to the traditional Maxwell model to understand how each affects the tidal dissipation of heat within rocky bodies. We find both the Andrade and Sundberg-Coope
We analyze thermal emission spectra using the 2001 Mars Odyssey Thermal Emission Imaging System (THEMIS) and the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) to characterize grain size and mineralogical composition of dunes at Hargr
We present observations obtained with the 10-m Keck telescopes of the forbidden SO rovibronic transition at 1.707 micron on Io while in eclipse. We show its spatial distribution at a resolution of ~0.12 and a spectral resolution of R ~2500, as well a
Early in the Moons history volcanic outgassing may have produced a periodic millibar level atmosphere (Needham and Kring, 2017). We examined the relevant atmospheric escape processes and lifetime of such an atmosphere. Thermal escape rates were calcu