ﻻ يوجد ملخص باللغة العربية
We present a detailed numerical simulation study of a two dimensional system of particles interacting via the Weeks-Chandler-Anderson potential, the repulsive part of the Lennard-Jones potential. With reduction of density, the system shows a two-step melting: a continuous melting from solid to hexatic phase, followed by a a first order melting of hexatic to liquid. The solid-hexatic melting is consistent with the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) scenario and shows dislocation unbinding. The first order melting of hexatic to fluid phase, on the other hand, is dominated by formation of string of defects at the hexatic-fluid interfaces.
This paper studies numerically the Weeks-Chandler-Andersen (WCA) system, which is shown to obey hidden scale invariance with a density-scaling exponent that varies from below 5 to above 500. This unprecedented variation makes it advantageous to use t
It is demonstrated that the Lindemanns criterion of melting can be formulated for two-dimensional classical solids using statistical mechanics arguments. With this formulation the expressions for the melting temperature are equivalent in three and tw
The question about the existence of a structural glass transition in two dimensions is studied using mode coupling theory (MCT). We determine the explicit d-dependence of the memory functional of mode coupling for one-component systems. Applied to tw
We perform micro-rheological experiments with a colloidal bead driven through a viscoelastic worm-like micellar fluid and observe two distinctive shear thinning regimes, each of them displaying a Newtonian-like plateau. The shear thinning behavior at
We provide a quantitative analysis of all kinds of topological defects present in 2D passive and active repulsive disk systems. We show that the passage from the solid to the hexatic is driven by the unbinding of dislocations. Instead, although we se