ترغب بنشر مسار تعليمي؟ اضغط هنا

Transferability of Natural Language Inference to Biomedical Question Answering

137   0   0.0 ( 0 )
 نشر من قبل Minbyul Jeong
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Biomedical question answering (QA) is a challenging task due to the scarcity of data and the requirement of domain expertise. Pre-trained language models have been used to address these issues. Recently, learning relationships between sentence pairs has been proved to improve performance in general QA. In this paper, we focus on applying BioBERT to transfer the knowledge of natural language inference (NLI) to biomedical QA. We observe that BioBERT trained on the NLI dataset obtains better performance on Yes/No (+5.59%), Factoid (+0.53%), List type (+13.58%) questions compared to performance obtained in a previous challenge (BioASQ 7B Phase B). We present a sequential transfer learning method that significantly performed well in the 8th BioASQ Challenge (Phase B). In sequential transfer learning, the order in which tasks are fine-tuned is important. We measure an unanswerable rate of the extractive QA setting when the formats of factoid and list type questions are converted to the format of the Stanford Question Answering Dataset (SQuAD).

قيم البحث

اقرأ أيضاً

Existing datasets for natural language inference (NLI) have propelled research on language understanding. We propose a new method for automatically deriving NLI datasets from the growing abundance of large-scale question answering datasets. Our appro ach hinges on learning a sentence transformation model which converts question-answer pairs into their declarative forms. Despite being primarily trained on a single QA dataset, we show that it can be successfully applied to a variety of other QA resources. Using this system, we automatically derive a new freely available dataset of over 500k NLI examples (QA-NLI), and show that it exhibits a wide range of inference phenomena rarely seen in previous NLI datasets.
The recent success of question answering systems is largely attributed to pre-trained language models. However, as language models are mostly pre-trained on general domain corpora such as Wikipedia, they often have difficulty in understanding biomedi cal questions. In this paper, we investigate the performance of BioBERT, a pre-trained biomedical language model, in answering biomedical questions including factoid, list, and yes/no type questions. BioBERT uses almost the same structure across various question types and achieved the best performance in the 7th BioASQ Challenge (Task 7b, Phase B). BioBERT pre-trained on SQuAD or SQuAD 2.0 easily outperformed previous state-of-the-art models. BioBERT obtains the best performance when it uses the appropriate pre-/post-processing strategies for questions, passages, and answers.
While natural language processing systems often focus on a single language, multilingual transfer learning has the potential to improve performance, especially for low-resource languages. We introduce XLDA, cross-lingual data augmentation, a method t hat replaces a segment of the input text with its translation in another language. XLDA enhances performance of all 14 tested languages of the cross-lingual natural language inference (XNLI) benchmark. With improvements of up to $4.8%$, training with XLDA achieves state-of-the-art performance for Greek, Turkish, and Urdu. XLDA is in contrast to, and performs markedly better than, a more naive approach that aggregates examples in various languages in a way that each example is solely in one language. On the SQuAD question answering task, we see that XLDA provides a $1.0%$ performance increase on the English evaluation set. Comprehensive experiments suggest that most languages are effective as cross-lingual augmentors, that XLDA is robust to a wide range of translation quality, and that XLDA is even more effective for randomly initialized models than for pretrained models.
201 - Daniel Khashabi 2019
Natural language understanding (NLU) of text is a fundamental challenge in AI, and it has received significant attention throughout the history of NLP research. This primary goal has been studied under different tasks, such as Question Answering (QA) and Textual Entailment (TE). In this thesis, we investigate the NLU problem through the QA task and focus on the aspects that make it a challenge for the current state-of-the-art technology. This thesis is organized into three main parts: In the first part, we explore multiple formalisms to improve existing machine comprehension systems. We propose a formulation for abductive reasoning in natural language and show its effectiveness, especially in domains with limited training data. Additionally, to help reasoning systems cope with irrelevant or redundant information, we create a supervised approach to learn and detect the essential terms in questions. In the second part, we propose two new challenge datasets. In particular, we create two datasets of natural language questions where (i) the first one requires reasoning over multiple sentences; (ii) the second one requires temporal common sense reasoning. We hope that the two proposed datasets will motivate the field to address more complex problems. In the final part, we present the first formal framework for multi-step reasoning algorithms, in the presence of a few important properties of language use, such as incompleteness, ambiguity, etc. We apply this framework to prove fundamental limitations for reasoning algorithms. These theoretical results provide extra intuition into the existing empirical evidence in the field.
Deep learning has improved performance on many natural language processing (NLP) tasks individually. However, general NLP models cannot emerge within a paradigm that focuses on the particularities of a single metric, dataset, and task. We introduce t he Natural Language Decathlon (decaNLP), a challenge that spans ten tasks: question answering, machine translation, summarization, natural language inference, sentiment analysis, semantic role labeling, zero-shot relation extraction, goal-oriented dialogue, semantic parsing, and commonsense pronoun resolution. We cast all tasks as question answering over a context. Furthermore, we present a new Multitask Question Answering Network (MQAN) jointly learns all tasks in decaNLP without any task-specific modules or parameters in the multitask setting. MQAN shows improvements in transfer learning for machine translation and named entity recognition, domain adaptation for sentiment analysis and natural language inference, and zero-shot capabilities for text classification. We demonstrate that the MQANs multi-pointer-generator decoder is key to this success and performance further improves with an anti-curriculum training strategy. Though designed for decaNLP, MQAN also achieves state of the art results on the WikiSQL semantic parsing task in the single-task setting. We also release code for procuring and processing data, training and evaluating models, and reproducing all experiments for decaNLP.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا