ترغب بنشر مسار تعليمي؟ اضغط هنا

Physics of Eclipsing Binaries. V. General Framework for Solving the Inverse Problem

66   0   0.0 ( 0 )
 نشر من قبل Kyle Conroy
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

PHOEBE 2 is a Python package for modeling the observables of eclipsing star systems, but until now has focused entirely on the forward-model -- that is, generating a synthetic model given fixed values of a large number of parameters describing the system and the observations. The inverse problem, obtaining orbital and stellar parameters given observational data, is more complicated and computationally expensive as it requires generating a large set of forward-models to determine which set of parameters and uncertainties best represent the available observational data. The process of determining the best solution and also of obtaining reliable and robust uncertainties on those parameters often requires the use of multiple algorithms, including both optimizers and samplers. Furthermore, the forward-model of PHOEBE has been designed to be as physically robust as possible, but is computationally expensive compared to other codes. It is useful, therefore, to use whichever code is most efficient given the reasonable assumptions for a specific system, but learning the intricacies of multiple codes presents a barrier to doing this in practice. Here we present the 2.3 release of PHOEBE (publicly available from http://phoebe-project.org) which introduces a general framework for defining and handling distributions on parameters, and utilizing multiple different estimation, optimization, and sampling algorithms. The presented framework supports multiple forward-models, including the robust model built into PHOEBE itself.

قيم البحث

اقرأ أيضاً

Hubble Space Telescope (HST) Fine Guidance Sensor (FGS) trigonometric parallax observations were obtained to directly determine distances to five nearby M-dwarf / M-dwarf eclipsing binary systems. These systems are intrinsically interesting as benchm ark systems for establishing basic physical parameters for low-mass stars, such as luminosity L, and radius R. HST/FGS distances are also one of the few direct checks on Gaia trigonometric parallaxes, given the comparable sensitivity in both magnitude limit and determination of parallactic angles. A spectral energy distribution (SED) fit of each systems blended flux output was carried out, allowing for estimation of the bolometric flux from the primary and secondary components of each system. From the stellar M, L, and R values, the low-mass star relationships between L and M, and R and M, are compared against idealized expectations for such stars. An examination on the inclusion of these close M-dwarf/M-dwarf pairs in higher-order common proper motion (CPM) pairs is analysed; each of the 5 systems has indications of being part of a CPM system. Unexpected distances on interesting objects found within the grid of parallactic reference stars are also presented, including a nearby M dwarf and a white dwarf.
The Kepler Mission has provided unprecedented, nearly continuous photometric data of $sim$200,000 objects in the $sim$105 deg$^{2}$ field of view from the beginning of science operations in May of 2009 until the loss of the second reaction wheel in M ay of 2013. The Kepler Eclipsing Binary Catalog contains information including but not limited to ephemerides, stellar parameters and analytical approximation fits for every known eclipsing binary system in the Kepler Field of View. Using Target Pixel level data collected from Kepler in conjunction with the Kepler Eclipsing Binary Catalog, we identify false positives among eclipsing binaries, i.e. targets that are not eclipsing binaries themselves, but are instead contaminated by eclipsing binary sources nearby on the sky and show eclipsing binary signatures in their light curves. We present methods for identifying these false positives and for extracting new light curves for the true source of the observed binary signal. For each source, we extract three separate light curves for each quarter of available data by optimizing the signal-to-noise ratio, the relative percent eclipse depth and the flux eclipse depth. We present 289 new eclipsing binaries in the Kepler Field of View that were not targets for observation, and these have been added to the Catalog. An online version of this Catalog with downloadable content and visualization tools is maintained at http://keplerEBs.villanova.edu.
We are entering an era of unprecedented quantities of data from current and planned survey telescopes. To maximise the potential of such surveys, automated data analysis techniques are required. Here we implement a new methodology for variable star c lassification, through the combination of Kohonen Self Organising Maps (SOM, an unsupervised machine learning algorithm) and the more common Random Forest (RF) supervised machine learning technique. We apply this method to data from the K2 mission fields 0-4, finding 154 ab-type RR Lyraes (10 newly discovered), 377 Delta Scuti pulsators, 133 Gamma Doradus pulsators, 183 detached eclipsing binaries, 290 semi-detached or contact eclipsing binaries and 9399 other periodic (mostly spot-modulated) sources, once class significance cuts are taken into account. We present lightcurve features for all K2 stellar targets, including their three strongest detected frequencies, which can be used to study stellar rotation periods where the observed variability arises from spot modulation. The resulting catalogue of variable stars, classes, and associated data features are made available online. We publish our SOM code in Python as part of the open source PyMVPA package, which in combination with already available RF modules can be easily used to recreate the method.
300 - Nicolas Lodieu 2020
We highlight the importance of eclipsing double-line binaries in our understanding on star formation and evolution. We review the recent discoveries of low-mass and sub-stellar eclipsing binaries belonging to star-forming regions, open clusters, and globular clusters identified by ground-based surveys and space missions with high-resolution spectroscopic follow-up. These discoveries provide benchmark systems with known distances, metallicities, and ages to calibrate masses and radii predicted by state-of-the-art evolutionary models to a few percent. We report their density and discuss current limitations on the accuracy of the physical parameters. We discuss future opportunities and highlight future guidelines to fill gaps in age and metallicity to improve further our knowledge of low-mass stars and brown dwarfs.
The goal of this work is to conduct a photometric study of eclipsing binaries in M31. We apply a modified box-fitting algorithm to search for eclipsing binary candidates and determine their period. We classify these candidates into detached, semi-det ached, and contact systems using the Fourier decomposition method. We cross-match the position of our detached candidates with the photometry from Local Group Survey (Massey et al. 2006) and select 13 candidates brighter than 20.5 magnitude in V. The relative physical parameters of these detached candidates are further characterized with Detached Eclipsing Binary Light curve fitter (DEBiL) by Devor (2005). We will followup the detached eclipsing binaries spectroscopically and determine the distance to M31.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا