ترغب بنشر مسار تعليمي؟ اضغط هنا

$LambdaLambda N$-$Xi NN$ $S$ wave resonance

86   0   0.0 ( 0 )
 نشر من قبل Alfredo Valcarce
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We use an existing model of the $LambdaLambda N - Xi NN$ three-body system based in two-body separable interactions to study the $(I,J^P)=(1/2,1/2^+)$ three-body channel. For the $LambdaLambda$, $Xi N$, and $LambdaLambda - Xi N$ amplitudes we have constructed separable potentials based on the most recent results of the HAL QCD Collaboration. They are characterized by the existence of a resonance just below or above the $Xi N$ threshold in the so-called $H$-dibaryon channel, $(i,j^p)=(0,0^+)$. A three-body resonance appears {2.3} MeV above the $Xi d$ threshold. We show that if the $LambdaLambda - Xi N$ $H$-dibaryon channel is not considered, the $LambdaLambda N - Xi NN$ $S$ wave resonance disappears. Thus, the possible existence of a $LambdaLambda N - Xi NN$ resonance would be sensitive to the $LambdaLambda - Xi N$ interaction. The existence or nonexistence of this resonance could be evidenced by measuring, for example, the $Xi d$ cross section.

قيم البحث

اقرأ أيضاً

We study the coupled $LambdaLambda nn-Xi^- pnn$ system to check whether the inclusion of channel coupling is able to bind the $LambdaLambda nn$ system. We use a separable potential three-body model of the coupled $LambdaLambda nn - Xi^- pnn$ system a s well as a variational four-body calculation with realistic interactions. Our results exclude the possibility of a $LambdaLambda nn$ bound state by a large margin. However, we have found a $Xi^- t$ quasibound state above the $LambdaLambda nn$ threshold.
The $bar{K} + N to K + Xi$ reaction is studied for center-of-momentum energies ranging from threshold to 3 GeV in an effective Lagrangian approach that includes the hyperon $s$- and $u$-channel contributions as well as a phenomenological contact ampl itude. The latter accounts for the rescattering term in the scattering equation and possible short-range dynamics not included explicitly in the model. Existing data are well reproduced and three above-the-threshold resonances were found to be required to describe the data, namely, the $Lambda(1890)$, $Sigma(2030)$, and $Sigma(2250)$. For the latter resonance we have assumed the spin-parity of $J^P=5/2^-$ and a mass of 2265 MeV. The $Sigma(2030)$ resonance is crucial in achieving a good reproduction of not only the measured total and differential cross sections, but also the recoil polarization asymmetry. More precise data are required before a more definitive statement can be made about the other two resonances, in particular, about the $Sigma(2250)$ resonance that is introduced to describe a small bump structure observed in the total cross section of $K^- + p to K^+ + Xi^-$. The present analysis also reveals a peculiar behavior of the total cross section data in the threshold energy region in $K^- + p to K^+ + Xi^-$, where the $P$- and $D$-waves dominate instead of the usual $S$-wave. Predictions for the target-recoil asymmetries of the $bar{K} + N to K + Xi$ reaction are also presented.
The $S$-wave $LambdaLambda$ and $N Xi$ interactions are studied on the basis of the (2+1)-flavor lattice QCD simulations close to the physical point ($m_pi simeq 146{rm{MeV}}$ and $m_K simeq 525{rm{MeV}}$). Lattice QCD potentials in four different sp in-isospin channels are extracted by using the coupled-channel HAL QCD method and are parametrized by analytic functions to calculate the scattering phase shifts. The $Lambda Lambda$ interaction at low energies shows only a weak attraction, which does not provide a bound or resonant dihyperon. The $NXi$ interaction in the spin-singlet and isospin-singlet channel is most attractive and lead the $NXi$ system near unitarity. Relevance to the strangeness=$-2$ hypernuclei as well as to two-baryon correlations in proton-proton, proton-nucleus and nucleus-nucleus collisions is also discussed.
Phase shifts and inelasticity parameters for $NN$ scattering in the partial-wave channels ${}^3S_1$--${}^3D_1$ and ${}^1S_0$ at energies $T_{rm lab}$ from zero to about 1 GeV are described within a unified $NN$ potential model assuming the formation of isoscalar and isovector dibaryon resonances near the $NN^*(1440)$ threshold. Evidence for these near-threshold resonances is actually found in the recent WASA experiments on single- and double-pion production in $NN$ collisions. There, the excitation of the Roper resonance $N^*(1440)$ exhibits a structure in the energy dependence of the total cross section, which corresponds to the formation of dibaryon states with $I(J^pi)=0(1^+)$ and $1(0^+)$ at the $NN^*(1440)$ threshold. These two $S$-wave dibaryon resonances may provide a new insight into the nature of the strong $NN$ interaction at low and intermediate energies.
We generalize the Jacobi no-core shell model (J-NCSM) to study double-strangeness hypernuclei. All particle
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا