ﻻ يوجد ملخص باللغة العربية
The Vega planetary system hosts the archetype of extrasolar Kuiper belts, and is rich in dust from the sub-au region out to 100s of au, suggesting intense dynamical activity. We present ALMA mm observations that detect and resolve the outer dust belt from the star for the first time. The interferometric visibilities show that the belt can be fit by a Gaussian model or by power-law models with a steep inner edge (at 60-80 au). The belt is very broad, extending out to at least 150-200 au. We strongly detect the star and set a stringent upper limit to warm dust emission previously detected in the infrared. We discuss three scenarios that could explain the architecture of Vegas planetary system, including the new {ALMA} constraints: no outer planets, a chain of low-mass planets, and a single giant planet. The planet-less scenario is only feasible if the outer belt was born with the observed sharp inner edge. If instead the inner edge is currently being truncated by a planet, then the planet must be $gtrsim$6 M$_{oplus}$ and at $lesssim71$ au to have cleared its chaotic zone within the system age. In the planet chain scenario, outward planet migration and inward scattering of planetesimals could produce the hot and warm dust observed in the inner regions of the system. In the single giant planet scenario, an asteroid belt could be responsible for the warm dust, and mean motion resonances with the planet could put asteroids on star-grazing orbits, producing the hot dust.
When imaged at high-resolution, many proto-planetary discs show gaps and rings in their dust sub-mm continuum emission profile. These structures are widely considered to originate from local maxima in the gas pressure profile. The properties of the u
Stellar rotation is a key in our understanding of both mass-loss and evolution of intermediate and massive stars. It can lead to anisotropic mass-loss in the form of radiative wind or an excretion disk. We wished to spatially resolve the photosphere
The infrared dust emission from the white dwarf GD 56 is found to rise and fall by 20% peak-to-peak over 11.2 yr, and is consistent with ongoing dust production and depletion. It is hypothesized that the dust is produced via collisions associated wit
We present high-precision photometry of two transit events of the extrasolar planetary system WASP-5, obtained with the Danish 1.54m telescope at ESO La Silla. In order to minimise both random and flat-fielding errors, we defocussed the telescope so
We report an analysis of the dust disk around DM~Tau, newly observed with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 mm. The ALMA observations with high sensitivity (8.4~$mu$Jy/beam) and high angular resolution (35~mas, 5.1~au) de