ﻻ يوجد ملخص باللغة العربية
Coronavirus Disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2). The virus transmits rapidly; it has a basic reproductive number R of 2.2-2.7. In March 2020, the World Health Organization declared the COVID-19 outbreak a pandemic. COVID-19 is currently affecting more than 200 countries with 6M active cases. An effective testing strategy for COVID-19 is crucial to controlling the outbreak but the demand for testing surpasses the availability of test kits that use Reverse Transcription Polymerase Chain Reaction (RT-PCR). In this paper, we present a technique to screen for COVID-19 using artificial intelligence. Our technique takes only seconds to screen for the presence of the virus in a patient. We collected a dataset of chest X-ray images and trained several popular deep convolution neural network-based models (VGG, MobileNet, Xception, DenseNet, InceptionResNet) to classify the chest X-rays. Unsatisfied with these models, we then designed and built a Residual Attention Network that was able to screen COVID-19 with a testing accuracy of 98% and a validation accuracy of 100%. A feature maps visual of our model show areas in a chest X-ray which are important for classification. Our work can help to increase the adaptation of AI-assisted applications in clinical practice. The code and dataset used in this project are available at https://github.com/vishalshar/covid-19-screening-using-RAN-on-X-ray-images.
The ongoing global pandemic of Coronavirus Disease 2019 (COVID-19) poses a serious threat to public health and the economy. Rapid and accurate diagnosis of COVID-19 is crucial to prevent the further spread of the disease and reduce its mortality. Che
The novel coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy. However, there is still lack of studies on effectively quantifying the lung infection caused by
This study proposed a novel framework for COVID-19 severity prediction, which is a combination of data-centric and model-centric approaches. First, we propose a data-centric pre-training for extremely scare data scenarios of the investigating dataset
The COVID-19 pandemic continues to spread and impact the well-being of the global population. The front-line modalities including computed tomography (CT) and X-ray play an important role for triaging COVID patients. Considering the limited access of
It is still nontrivial to develop a new fast COVID-19 screening method with the easier access and lower cost, due to the technical and cost limitations of the current testing methods in the medical resource-poor districts. On the other hand, there ar