ﻻ يوجد ملخص باللغة العربية
The electro-optical properties of most semiconductors and insulators of technological interest are dominated by the presence of electron-hole quasiparticles called excitons. The manipulation of these hydrogen-like quasi-particles in dielectrics, has received great interest under the name excitonics that is expected to be of great potential for a variety of applications, including optoelectronics and photonics. A crucial step for such exploitation of excitons in advanced technological applications is a detailed understanding of their dynamical nature. However, the ultrafast processes unfolding on few-femtosecond and attosecond time scales, of primary relevance in view of the desired extension of electronic devices towards the petahertz regime, remain largely unexplored. Here we apply attosecond transient reflection spectroscopy in a sequential two-foci geometry and observe sub-femtosecond dynamics of a core-level exciton in bulk MgF$_2$ single crystals. With our unique setup, we can access absolute phase delays which allow for an unambiguous comparison with theoretical calculations based on the Wannier-Mott model. Our results show that excitons surprisingly exhibit a dual atomic- and solid-like character which manifests itself on different time scales. While the former is responsible for a femtosecond optical Stark effect, the latter dominates the attosecond excitonic response and originates by the interaction with the crystal. Further investigation of the role of exciton localization proves that the bulk character persists also for strongly localised quasi-particles and allows us to envision a new route to control exciton dynamics in the close-to-petahertz regime.
The reconstruction of attosecond beating by interference of two-photon transitions (RABBIT) is one of the most widely used techniques for resolving ultrafast electronic dynamics in atomic and molecular systems. As it relies on the interference of pho
A major challenge for future spintronics is to develop suitable spin transport channels with long spin lifetime and propagation length. Graphene can meet these requirements, even at room temperature. On the other side, taking advantage of the fast mo
We present a simplified yet sophisticated variation to localised surface plasmon resonance spectroscopy, which makes use of naked or non-functionalised, nanoparticle templates. These nanoparticle templates, produced with a rapid and scalable process,
Large coupling strengths in exciton-photon interactions are important for quantum photonic network, while strong cavity-quantum-dot interactions have been focused on s-shell excitons with small coupling strengths. Here we demonstrate strong interacti
Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities a