ترغب بنشر مسار تعليمي؟ اضغط هنا

Analyticity of density of states for the Cauchy distribution

73   0   0.0 ( 0 )
 نشر من قبل Werner Kirsch
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the density of states for the Cauchy distribution for a large class of random operators and show it is analytic in a strip about the real axis.

قيم البحث

اقرأ أيضاً

In this short note we demonstrate that the definition of the density of states of a Schr{o}dinger operator with bounded potential in general depends on the choice of the domain undergoing the thermodynamic limit.
Explicit formulas for the analytic extensions of the scattering matrix and the time delay of a quasi-one-dimensional discrete Schrodinger operator with a potential of finite support are derived. This includes a careful analysis of the band edge singu larities and allows to prove a Levinson-type theorem. The main algebraic tool are the plane wave transfer matrices.
We introduce a new class of two(multi)-matrix models of positive Hermitean matrices coupled in a chain; the coupling is related to the Cauchy kernel and differs from the exponential coupling more commonly used in similar models. The correlation funct ions are expressed entirely in terms of certain biorthogonal polynomials and solutions of appropriate Riemann-Hilbert problems, thus paving the way to a steepest descent analysis and universality results. The interpretation of the formal expansion of the partition function in terms of multicolored ribbon-graphs is provided and a connection to the O(1) model. A steepest descent analysis of the partition function reveals that the model is related to a trigonal curve (three-sheeted covering of the plane) much in the same way as the Hermitean matrix model is related to a hyperelliptic curve.
In the present manuscript we consider the Boltzmann equation that models a polyatomic gas by introducing one additional continuous variable, referred to as microscopic internal energy. We establish existence and uniqueness theory in the space homogen eous setting for the full non-linear case, under an extended Grad assumption on transition probability rate, that comprises hard potentials for both the relative speed and internal energy with the rate in the interval $(0,2]$, which is multiplied by an integrable angular part and integrable partition functions. The Cauchy problem is resolved by means of an abstract ODE theory in Banach spaces, for an initial data with finite and strictly positive gas mass and energy, finite momentum, and additionally finite $k_*$ polynomial moment, with $k_*$ depending on the rate of the transition probability and the structure of a polyatomic molecule or its internal degrees of freedom. Moreover, we prove that polynomially and exponentially weighted Banach space norms associated to the solution are both generated and propagated uniformly in time.
In 2017, Lienert and Tumulka proved Borns rule on arbitrary Cauchy surfaces in Minkowski space-time assuming Borns rule and a corresponding collapse rule on horizontal surfaces relative to a fixed Lorentz frame, as well as a given unitary time evolut ion between any two Cauchy surfaces. Here, we prove Borns rule on arbitrary Cauchy surfaces from a different, but equally reasonable, set of assumptions. The conclusion is that if detectors are placed along any Cauchy surface $Sigma$, then the observed particle configuration on $Sigma$ has distribution $|Psi_Sigma|^2$, suitably understood. The main different assumption is that the Born and collapse rules hold on any spacelike hyperplane, i.e., at any time coordinate in any Lorentz frame. Heuristically, this follows if the dynamics of the detectors is Lorentz invariant. In addition, we assume, as did Lienert and Tumulka, that there is no interaction faster than light and that there is no propagation faster than light.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا