ترغب بنشر مسار تعليمي؟ اضغط هنا

Pileup corrections on higher-order cumulants

89   0   0.0 ( 0 )
 نشر من قبل Toshihiro Nonaka
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a method to remove the contributions of pileup events from higher-order cumulants and moments of event-by-event particle distributions. Assuming that the pileup events are given by the superposition of two independent single-collision events, we show that the true moments in each multiplicity bin can be obtained recursively from lower multiplicity events. In the correction procedure the necessary information are only the probabilities of pileup events. Other terms are extracted from the experimental data. We demonstrate that the true cumulants can be reconstructed successfully by this method in simple models. Systematics on trigger inefficiencies and correction parameters are discussed.

قيم البحث

اقرأ أيضاً

We derive formulas for the efficiency correction of cumulants with many efficiency bins. The derivation of the formulas is simpler than the previously suggested method, but the numerical cost is drastically reduced from the naive method. From analyti cal and numerical analyses in simple toy models, we show that the use of the averaged efficiency in the efficiency correction can lead to wrong corrected values, which have larger deviation for higher order cumulants. These analyses show the importance of carrying out the efficiency correction without taking the average.
We present lattice QCD calculations of higher order cumulants of electric charge distributions for small baryon chemical potentials $mu_B$ by using up to NNNLO Taylor expansions. Ratios of these cumulants are evaluated on the pseudo-critical line, $T _{pc}(mu_B)$, of the chiral transition and compared to corresponding measurements in heavy ion collision experiments by the STAR and PHENIX Collaborations. We demonstrate that these comparisons give strong constraints on freeze-out parameters. Furthermore, we use strangeness fluctuation observables to compute the ratio $mu_S/mu_B$ on the crossover line and compare it to $mu_S/mu_B$ at freeze-out stemming from fits to strange baryon yields measured by the STAR Collaboration.
In this paper we propose a non-minimal, and ghost free, coupling between the gauge field and the fermionic one from which we obtain, perturbatively, terms with higher order derivatives as quantum corrections to the photon effective action in the low energy regime. We calculate the one-loop effective action of the photon field and show that, in addition to the Euler-Heisenberg terms, the well known Lee-Wick term, $sim F_{mu u}partial_{alpha}partial^{alpha}F^{mu u}$, arises in low energy regime as a quantum correction from the model. We also obtain the electron self energy in leading order.
We study the dependence of the normalized moments of the net-proton multiplicity distributions on the definition of centrality in relativistic nuclear collisions at a beam energy of $sqrt{s_{mathrm{NN}}}= 7.7$ GeV. Using the UrQMD model as event gene rator we find that the centrality definition has a large effect on the extracted cumulant ratios. Furthermore we find that the finite efficiency for the determination of the centrality introduces an additional systematic uncertainty. Finally, we quantitatively investigate the effects of event-pile up and other possible spurious effects which may change the measured proton number. We find that pile-up alone is not sufficient to describe the data and show that a random double counting of events, adding significantly to the measured proton number, affects mainly the higher order cumulants in most central collisions.
We propose methods to reconstruct particle distributions with and without considering initial volume fluctuations. This approach enables us to correct for detector efficiencies and initial volume fluctuations simultaneously. Our study suggests such a tool could investigate the possible bimodal structure of net-proton distribution in Au+Au collisions at $sqrt{s_{rm NN}}=$7.7 GeV a signature of first-order phase transition and critical point [arXiv:1804.04463,arXiv:1811.04456].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا