ترغب بنشر مسار تعليمي؟ اضغط هنا

ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image Classification

110   0   0.0 ( 0 )
 نشر من قبل Xiaoxu Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite achieving state-of-the-art performance, deep learning methods generally require a large amount of labeled data during training and may suffer from overfitting when the sample size is small. To ensure good generalizability of deep networks under small sample sizes, learning discriminative features is crucial. To this end, several loss functions have been proposed to encourage large intra-class compactness and inter-class separability. In this paper, we propose to enhance the discriminative power of features from a new perspective by introducing a novel neural network termed Relation-and-Margin learning Network (ReMarNet). Our method assembles two networks of different backbones so as to learn the features that can perform excellently in both of the aforementioned two classification mechanisms. Specifically, a relation network is used to learn the features that can support classification based on the similarity between a sample and a class prototype; at the meantime, a fully connected network with the cross entropy loss is used for classification via the decision boundary. Experiments on four image datasets demonstrate that our approach is effective in learning discriminative features from a small set of labeled samples and achieves competitive performance against state-of-the-art methods. Codes are available at https://github.com/liyunyu08/ReMarNet.



قيم البحث

اقرأ أيضاً

Softmax loss is arguably one of the most popular losses to train CNN models for image classification. However, recent works have exposed its limitation on feature discriminability. This paper casts a new viewpoint on the weakness of softmax loss. On the one hand, the CNN features learned using the softmax loss are often inadequately discriminative. We hence introduce a soft-margin softmax function to explicitly encourage the discrimination between different classes. On the other hand, the learned classifier of softmax loss is weak. We propose to assemble multiple these weak classifiers to a strong one, inspired by the recognition that the diversity among weak classifiers is critical to a good ensemble. To achieve the diversity, we adopt the Hilbert-Schmidt Independence Criterion (HSIC). Considering these two aspects in one framework, we design a novel loss, named as Ensemble soft-Margin Softmax (EM-Softmax). Extensive experiments on benchmark datasets are conducted to show the superiority of our design over the baseline softmax loss and several state-of-the-art alternatives.
The success of deep learning has been witnessed as a promising technique for computer-aided biomedical image analysis, due to end-to-end learning framework and availability of large-scale labelled samples. However, in many cases of biomedical image a nalysis, deep learning techniques suffer from the small sample learning (SSL) dilemma caused mainly by lack of annotations. To be more practical for biomedical image analysis, in this paper we survey the key SSL techniques that help relieve the suffering of deep learning by combining with the development of related techniques in computer vision applications. In order to accelerate the clinical usage of biomedical image analysis based on deep learning techniques, we intentionally expand this survey to include the explanation methods for deep models that are important to clinical decision making. We survey the key SSL techniques by dividing them into five categories: (1) explanation techniques, (2) weakly supervised learning techniques, (3) transfer learning techniques, (4) active learning techniques, and (5) miscellaneous techniques involving data augmentation, domain knowledge, traditional shallow methods and attention mechanism. These key techniques are expected to effectively support the application of deep learning in clinical biomedical image analysis, and furtherly improve the analysis performance, especially when large-scale annotated samples are not available. We bulid demos at https://github.com/PengyiZhang/MIADeepSSL.
In standard classification, we typically treat class categories as independent of one-another. In many problems, however, we would be neglecting the natural relations that exist between categories, which are often dictated by an underlying biological or physical process. In this work, we propose novel formulations of the classification problem, based on a realization that the assumption of class-independence is a limiting factor that leads to the requirement of more training data. First, we propose manual ways to reduce our data needs by reintroducing knowledge about problem-specific interclass relations into the training process. Second, we propose a general approach to jointly learn categorical label representations that can implicitly encode natural interclass relations, alleviating the need for strong prior assumptions, which are not always available. We demonstrate this in the domain of medical images, where access to large amounts of labelled data is not trivial. Specifically, our experiments show the advantages of this approach in the classification of Intravenous Contrast enhancement phases in CT images, which encapsulate multiple interesting inter-class relations.
Recently, label consistent k-svd (LC-KSVD) algorithm has been successfully applied in image classification. The objective function of LC-KSVD is consisted of reconstruction error, classification error and discriminative sparse codes error with L0-nor m sparse regularization term. The L0-norm, however, leads to NP-hard problem. Despite some methods such as orthogonal matching pursuit can help solve this problem to some extent, it is quite difficult to find the optimum sparse solution. To overcome this limitation, we propose a label embedded dictionary learning (LEDL) method to utilise the L1-norm as the sparse regularization term so that we can avoid the hard-to-optimize problem by solving the convex optimization problem. Alternating direction method of multipliers and blockwise coordinate descent algorithm are then exploited to optimize the corresponding objective function. Extensive experimental results on six benchmark datasets illustrate that the proposed algorithm has achieved superior performance compared to some conventional classification algorithms.
94 - Zhaoyang Hai , Xiabi Liu 2021
This paper proposes a meta-learning approach to evolving a parametrized loss function, which is called Meta-Loss Network (MLN), for training the image classification learning on small datasets. In our approach, the MLN is embedded in the framework of classification learning as a differentiable objective function. The MLN is evolved with the Evolutionary Strategy algorithm (ES) to an optimized loss function, such that a classifier, which optimized to minimize this loss, will achieve a good generalization effect. A classifier learns on a small training dataset to minimize MLN with Stochastic Gradient Descent (SGD), and then the MLN is evolved with the precision of the small-dataset-updated classifier on a large validation dataset. In order to evaluate our approach, the MLN is trained with a large number of small sample learning tasks sampled from FashionMNIST and tested on validation tasks sampled from FashionMNIST and CIFAR10. Experiment results demonstrate that the MLN effectively improved generalization compared to classical cross-entropy error and mean squared error.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا