ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding the intrinsic compression in polycrystalline films through a mean-field atomistic model

108   0   0.0 ( 0 )
 نشر من قبل Enrique Vasco
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Enrique Vasco




اسأل ChatGPT حول البحث

Mullins theory predicts the buildup of adatoms during surface diffusion at the edges of grooves where grain boundaries emerge to the surface of a polycrystalline film. However, the mesoscopic nature of this theory prevents the identification of the atomic scale physical mechanisms involved in this phenomenon. Here, we interpret the buildup of adatoms in atomistic terms through a mean-field rate-equation model and demonstrate both its kinetic nature and its impact on the intrinsic stress in these systems. Furthermore, the model provides estimates of the surface profile of intrinsic stress, of its typical mean values, and of the dependence of stress on temperature and deposition flux for different growth stages. These estimates agree well with reported experimental results obtained from recent advances in nanoscale mapping of mechanical stresses on the surface of polycrystalline films.


قيم البحث

اقرأ أيضاً

We examine magnetic relaxation in polycrystalline Fe films with strong and weak crystallographic texture. Out-of-plane ferromagnetic resonance (FMR) measurements reveal Gilbert damping parameters of $approx$ 0.0024 for Fe films with thicknesses of 4- 25 nm, regardless of their microstructural properties. The remarkable invariance with film microstructure strongly suggests that intrinsic Gilbert damping in polycrystalline Fe is a local property of nanoscale crystal grains, with limited impact from grain boundaries and film roughness. By contrast, the in-plane FMR linewidths of the Fe films exhibit distinct nonlinear frequency dependences, indicating the presence of strong extrinsic damping. To fit our experimental data, we have used a grain-to-grain two-magnon scattering model with two types of correlation functions aimed at describing the spatial distribution of inhomogeneities in the film. However, neither of the two correlation functions is able to reproduce the experimental data quantitatively with physically reasonable parameters. Our finding points to the need to further examine the fundamental impact of film microstructure on extrinsic damping.
The temperature dependent resistance $R$($T$) of polycrystalline ferromagnetic CoFeB thin films of varying thickness are analyzed considering various electrical scattering processes. We observe a resistance minimum in $R$($T$) curves below $simeq$ 29 K, which can be explained as an effect of intergranular Coulomb interaction in a granular system. The structural and Coulomb interaction related scattering processes contribute more as the film thickness decreases implying the role of disorder and granularity. Although the magnetic contribution to the resistance is the weakest compared to these two, it is the only thickness independent process. On the contrary, the negative coefficient of resistance can be explained by electron interaction effect in disordered amorphous films.
Monolayer van der Waals (vdW) magnets provide an exciting opportunity for exploring two-dimensional (2D) magnetism for scientific and technological advances, but the intrinsic ferromagnetism has only been observed at low temperatures. Here, we report the observation of room temperature ferromagnetism in manganese selenide (MnSe$_x$) films grown by molecular beam epitaxy (MBE). Magnetic and structural characterization provides strong evidence that in the monolayer limit, the ferromagnetism originates from a vdW manganese diselenide (MnSe$_2$) monolayer, while for thicker films it could originate from a combination of vdW MnSe$_2$ and/or interfacial magnetism of $alpha$-MnSe(111). Magnetization measurements of monolayer MnSe$_x$ films on GaSe and SnSe$_2$ epilayers show ferromagnetic ordering with large saturation magnetization of ~ 4 Bohr magnetons per Mn, which is consistent with density functional theory calculations predicting ferromagnetism in monolayer 1T-MnSe$_2$. Growing MnSe$_x$ films on GaSe up to high thickness (~ 40 nm) produces $alpha$-MnSe(111), and an enhanced magnetic moment (~ 2x) compared to the monolayer MnSe$_x$ samples. Detailed structural characterization by scanning transmission electron microscopy (STEM), scanning tunneling microscopy (STM), and reflection high energy electron diffraction (RHEED) reveal an abrupt and clean interface between GaSe(0001) and $alpha$-MnSe(111). In particular, the structure measured by STEM is consistent with the presence of a MnSe$_2$ monolayer at the interface. These results hold promise for potential applications in energy efficient information storage and processing.
We study the intrinsic superconductivity in a dissipative Floquet electronic system in the presence of attractive interactions. Based on the functional Keldysh theory beyond the mean-field treatment, we find that the system shows a time-periodic boso nic condensation and reaches an intrinsic dissipative Floquet superconducting (SC) phase. Due to the interplay between dissipations and periodic modulations, the Floquet SC gap becomes soft and contains the diffusive fermionic modes with finite lifetimes. However, bosonic modes of the bosonic condensation are still propagating even in the presence of dissipations.
Owing to their distinct properties, carbon nanotubes (CNTs) have emerged as promising candidate for field emission devices. It has been found experimentally that the results related to the field emission performance show variability. The design of an efficient field emitting device requires the analysis of the variabilities with a systematic and multiphysics based modeling approach. In this paper, we develop a model of randomly oriented CNTs in a thin film by coupling the field emission phenomena, the electron-phonon transport and the mechanics of single isolated CNT. A computational scheme is developed by which the states of CNTs are updated in time incremental manner. The device current is calculated by using Fowler-Nordheim equation for field emission to study the performance at the device scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا