ﻻ يوجد ملخص باللغة العربية
We study several Fokker-Planck equations arising from a stochastic chemical kinetic system modeling a gene regulatory network in biology. The densities solving the Fokker-Planck equations describe the joint distribution of the messenger RNA and micro RNA content in a cell. We provide theoretical and numerical evidences that the robustness of the gene expression is increased in the presence of micro RNA. At the mathematical level, increased robustness shows in a smaller coefficient of variation of the marginal density of the messenger RNA in the presence of micro RNA. These results follow from explicit formulas for solutions. Moreover, thanks to dimensional analyses and numerical simulations we provide qualitative insight into the role of each parameter in the model. As the increase of gene expression level comes from the underlying stochasticity in the models, we eventually discuss the choice of noise in our models and its influence on our results.
We propose an equilibrium-driven deformation algorithm (EDDA) to simulate the inbetweening transformations starting from an initial image to an equilibrium image, which covers images varying from a greyscale type to a colorful type on plane or manifo
We consider the Vlasov-Fokker-Planck equation with random electric field where the random field is parametrized by countably many infinite random variables due to uncertainty. At the theoretical level, with suitable assumption on the anisotropy of th
In the last years, tens of thousands gene expression profiles for cells of several organisms have been monitored. Gene expression is a complex transcriptional process where mRNA molecules are translated into proteins, which control most of the cell f
Fractional Fokker-Planck equation plays an important role in describing anomalous dynamics. To the best of our knowledge, the existing discussions mainly focus on this kind of equation involving one diffusion operator. In this paper, we first derive
In this work we consider an extension of a recently proposed structure preserving numerical scheme for nonlinear Fokker-Planck-type equations to the case of nonconstant full diffusion matrices. While in existing works the schemes are formulated in a