ترغب بنشر مسار تعليمي؟ اضغط هنا

Hadronic vs leptonic models for $gamma$-ray emission from VER J2227+608

60   0   0.0 ( 0 )
 نشر من قبل Houdun Zeng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent observations of VER J2227+608 reveal a broken power $gamma$-ray spectrum with the spectral index increasing from $sim 1.8$ in the GeV energy range to $sim 2.3$ in the TeV range. Such a spectral break can be attributed to radiative energy loss of energetic electrons in the leptonic scenario for the $gamma$-ray emission, which, in combination with characteristic age of the nearby pulsar, can be used to constrain magnetic field in the emission region. We show that the radio and X-ray observations can also be explained in such a scenario. In the hadronic scenario, the spectral break can be attributed to diffusion of energetic ions in a turbulent medium and detailed spectral measurement can be used to constrain the diffusion coefficient. These two models, however, predict drastically different spectra above 100 TeV, which will be uncovered with future high-resolution observations, such as LHAASO and/or CTA.



قيم البحث

اقرأ أيضاً

The AGILE satellite detected several episodes of transient gamma-ray emission from Cygnus X-3. Cross-correlating the AGILE light curve with both X-ray and radio monitoring data, we found that the main events of gamma-ray activity were detected while the system was in soft spectral X-ray states, that coincide with local and often sharp minima of the hard X-ray flux, a few days before intense radio outbursts. This repetitive temporal coincidence between the gamma-ray transient emission and spectral state changes of the source turns out to be the spectral signature of high-energy activity from this microquasar. The gamma-ray differential spectrum of Cygnus X-3 (100 MeV - 3 GeV), which was obtained by averaging the data collected by AGILE during the gamma-ray events, is consistent with a power law of photon index {alpha} = 2.0 +/- 0.2. Finally, we examined leptonic and hadronic emission models for the gamma-ray activity and found that both scenarios are valid. In particular, in the leptonic model - based on inverse Compton scatterings of mildly relativistic electrons on soft photons from both the Wolf-Rayet companion star and the accretion disk - the emitting particles may also contribute to the overall hard X-ray spectrum, possibly explaining the hard non-thermal power-law tail seen during special soft X-ray states in Cygnus X-3.
Recent data from the emph{Fermi} Large Area Telescope have revealed about a dozen distant hard-spectrum blazars that have very-high-energy (VHE; $gtrsim 100$ GeV) photons associated with them, but most of them have not yet been detected by imaging at mospheric Cherenkov telescopes. Most of these high-energy gamma-ray spectra, like those of other extreme high-frequency peaked BL Lac objects, can be well explained either by gamma rays emitted at the source or by cascades induced by ultra-high-energy cosmic rays, as we show specifically for KUV 00311$-$1938. We consider the prospects for detection of the VHE sources by the planned Cherenkov Telescope Array (CTA) and show how it can distinguish the two scenarios by measuring the integrated flux above $sim 500$ GeV (depending on source redshift) for several luminous sources with $z lesssim 1$ in the sample. Strong evidence for the origin of ultra-high-energy cosmic rays could be obtained from VHE observations with CTA. Depending on redshift, if the often quoted redshift of KUV 00311-1938 ($z = 0.61$) is believed, preliminary H.E.S.S. data favor cascades induced by ultra-high-energy cosmic rays. Accurate redshift measurements of hard-spectrum blazars are essential for this study.
303 - Xiao Zhang 2012
Hadronic gamma-ray emission from supernova remnants (SNRs) is an important tool to test shock acceleration of cosmic ray protons. Tycho is one of nearly a dozen Galactic SNRs which are suggested to emit hadronic gamma-ray emission. Among them, howeve r, it is the only one in which the hadronic emission is proposed to arise from the interaction with low-density (~0.3 cm^{-3}) ambient medium. Here we present an alternative hadronic explanation with a modest conversion efficiency (of order 1%) for this young remnant. With such an efficiency, a normal electron-proton ratio (of order 10^{-2}) is derived from the radio and X-ray synchrotron spectra and an average ambient density that is at least one-order-of-magnitude higher is derived from the hadronic gamma-ray flux. This result is consistent with the multi-band evidence of the presence of dense medium from the north to the east of the Tycho SNR. The SNR-cloud association, in combination with the HI absorption data, helps to constrain the so-far controversial distance to Tycho and leads to an estimate of 2.5 kpc.
Recently, detections of a high-energy gamma-ray source at the position of the Galactic center have been reported by multiple gamma-ray telescopes, spanning the energy range between 100 MeV and 100 TeV. Analysis of these signals strongly suggests the TeV emission to have a morphology consistent with a point source up to the angular resolution of the HESS telescope (approximately 3 pc), while the point-source nature of the GeV emission is currently unsettled, with indications that it may be spatially extended. In the case that the emission is hadronic and in a steady state, we show that the expected gamma-ray morphology is dominated by the distribution of target gas, rather than by details of cosmic-ray injection and propagation. Specifically, we expect a significant portion of hadronic emission to coincide with the position of the circum-nuclear ring, which resides between 1-3 pc from the Galactic center. We note that the upcoming Cherenkov Telescope Array (CTA) will be able to observe conclusive correlations between the morphology of the TeV gamma-ray source and the observed gas density, convincingly confirming or ruling out a hadronic origin for the gamma-ray emission.
64 - J. Devin , F. Acero , J. Ballet 2018
G326.3$-$1.8 (also known as MSH 15$-$56) has been detected in radio as a middle-aged composite supernova remnant (SNR) consisting of an SNR shell and a pulsar wind nebula (PWN), which has been crushed by the SNRs reverse shock. Previous $gamma$-ray s tudies of SNR G326.3$-$1.8 revealed bright and extended emission with uncertain origin. Understanding the nature of the $gamma$-ray emission allows probing the population of high-energy particles (leptons or hadrons) but can be challenging for sources of small angular extent. With the recent $textit{Fermi}$ Large Area Telescope data release Pass 8, we investigate the morphology of this SNR to disentangle the PWN from the SNR contribution. We perform a morphological and spectral analysis from 300 MeV to 300 GeV. We use the reconstructed events with the best angular resolution to separately investigate the PWN and the SNR emissions, which is crucial to accurately determine the spectral properties of G326.3$-$1.8 and understand its nature. The centroid of the $gamma$-ray emission evolves with energy and is spatially coincident with the radio PWN at high energies (E $>$ 3 GeV). The morphological analysis reveals that a model considering two contributions from the SNR and the PWN reproduces the $gamma$-ray data better than a single-component model. The associated spectral analysis using power laws shows two distinct spectral features, a softer spectrum for the remnant ($Gamma$ = 2.17 $pm$ 0.06) and a harder spectrum for the PWN ($Gamma$ = 1.79 $pm$ 0.12), consistent with hadronic and leptonic origin for the SNR and the PWN respectively. Focusing on the SNR spectrum, we use one-zone models to derive some physical properties and, in particular, we find that the emission is best explained with a hadronic scenario in which the large target density is provided by radiative shocks in HI clouds struck by the SNR.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا