ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Communication Complexity of Distribution Testing

129   0   0.0 ( 0 )
 نشر من قبل Arturo Castellanos Salinas
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The classical communication complexity of testing closeness of discrete distributions has recently been studied by Andoni, Malkin and Nosatzki (ICALP19). In this problem, two players each receive $t$ samples from one distribution over $[n]$, and the goal is to decide whether their two distributions are equal, or are $epsilon$-far apart in the $l_1$-distance. In the present paper we show that the quantum communication complexity of this problem is $tilde{O}(n/(tepsilon^2))$ qubits when the distributions have low $l_2$-norm, which gives a quadratic improvement over the classical communication complexity obtained by Andoni, Malkin and Nosatzki. We also obtain a matching lower bound by using the pattern matrix method. Let us stress that the samples received by each of the parties are classical, and it is only communication between them that is quantum. Our results thus give one setting where quantum protocols overcome classical protocols for a testing problem with purely classical samples.



قيم البحث

اقرأ أيضاً

141 - Dmitry Gavinsky 2017
This work addresses two problems in the context of two-party communication complexity of functions. First, it concludes the line of research, which can be viewed as demonstrating qualitative advantage of quantum communication in the three most common communication layouts: two-way interactive communication; one-way communication; simultaneous message passing (SMP). We demonstrate a functional problem, whose communication complexity is $O((log n)^2)$ in the quantum version of SMP and $tildeOmega(sqrt n)$ in the classical (randomised) version of SMP. Second, this work contributes to understanding the power of the weakest commonly studied regime of quantum communication $-$ SMP with quantum messages and without shared randomness (the latter restriction can be viewed as a somewhat artificial way of making the quantum model as weak as possible). Our function has an efficient solution in this regime as well, which means that even lacking shared randomness, quantum SMP can be exponentially stronger than its classical counterpart with shared randomness.
We study the communication complexity of computing functions $F:{0,1}^ntimes {0,1}^n rightarrow {0,1}$ in the memoryless communication model. Here, Alice is given $xin {0,1}^n$, Bob is given $yin {0,1}^n$ and their goal is to compute F(x,y) subject t o the following constraint: at every round, Alice receives a message from Bob and her reply to Bob solely depends on the message received and her input x; the same applies to Bob. The cost of computing F in this model is the maximum number of bits exchanged in any round between Alice and Bob (on the worst case input x,y). In this paper, we also consider variants of our memoryless model wherein one party is allowed to have memory, the parties are allowed to communicate quantum bits, only one player is allowed to send messages. We show that our memoryless communication model capture the garden-hose model of computation by Buhrman et al. (ITCS13), space bounded communication complexity by Brody et al. (ITCS13) and the overlay communication complexity by Papakonstantinou et al. (CCC14). Thus the memoryless communication complexity model provides a unified framework to study space-bounded communication models. We establish the following: (1) We show that the memoryless communication complexity of F equals the logarithm of the size of the smallest bipartite branching program computing F (up to a factor 2); (2) We show that memoryless communication complexity equals garden-hose complexity; (3) We exhibit various exponential separations between these memoryless communication models. We end with an intriguing open question: can we find an explicit function F and universal constant c>1 for which the memoryless communication complexity is at least $c log n$? Note that $cgeq 2+varepsilon$ would imply a $Omega(n^{2+varepsilon})$ lower bound for general formula size, improving upon the best lower bound by Nev{c}iporuk in 1966.
284 - Dmitry Gavinsky 2019
A relational bipartite communication problem is presented that has an efficient quantum simultaneous-messages protocol, but no efficient classical two-way protocol.
We study the effect that the amount of correlation in a bipartite distribution has on the communication complexity of a problem under that distribution. We introduce a new family of complexity measures that interpolates between the two previously stu died extreme cases: the (standard) randomised communication complexity and the case of distributional complexity under product distributions. We give a tight characterisation of the randomised complexity of Disjointness under distributions with mutual information $k$, showing that it is $Theta(sqrt{n(k+1)})$ for all $0leq kleq n$. This smoothly interpolates between the lower bounds of Babai, Frankl and Simon for the product distribution case ($k=0$), and the bound of Razborov for the randomised case. The upper bounds improve and generalise what was known for product distributions, and imply that any tight bound for Disjointness needs $Omega(n)$ bits of mutual information in the corresponding distribution. We study the same question in the distributional quantum setting, and show a lower bound of $Omega((n(k+1))^{1/4})$, and an upper bound, matching up to a logarithmic factor. We show that there are total Boolean functions $f_d$ on $2n$ inputs that have distributional communication complexity $O(log n)$ under all distributions of information up to $o(n)$, while the (interactive) distributional complexity maximised over all distributions is $Theta(log d)$ for $6nleq dleq 2^{n/100}$. We show that in the setting of one-way communication under product distributions, the dependence of communication cost on the allowed error $epsilon$ is multiplicative in $log(1/epsilon)$ -- the previous upper bounds had the dependence of more than $1/epsilon$.
The discrepancy method is widely used to find lower bounds for communication complexity of XOR games. It is well known that these bounds can be far from optimal. In this context Disjointness is usually mentioned as a case where the method fails to gi ve good bounds, because the increment of the value of the game is linear (rather than exponential) in the number of communicated bits. We show in this paper the existence of XOR games where the discrepancy method yields bounds as poor as one desires. Indeed, we show the existence of such games with any previously prescribed value. To prove this result we apply the theory of p-summing operators, a central topic in Banach space theory. We show in the paper other applications of this theory to the study of the communication complexity of XOR games.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا